

The 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences

inal ROGRAM

Congress Center Basel

Basel, SWITZERLAND

Conference Chairs

Petra Dittrich

ETH Zürich, SWITZERLAND

Andreas Hierlemann ETH Zürich, SWITZERLAND

Emmanuel Delamarche

IBM Research - Zürich, SWITZERLAND

CONFERENCE AT A GLANCE

	TI EITEITO	L AI A GI	
SUNDAY, 27 OCTOBER			
08:30	Workshop Registration		
09:00 - 17:00	Morning and Aftern	oon Workshops	
17:00 -19:00	Conference Registra	ation and Check-In	
17:00 -19:00	Wine and Cheese W	elcome Reception	
	MONDAY	, 28 OCTOBER	
07:00 - 18:15	Registration		
08:00 - 08:30	Opening Remarks		
08:30 - 09:15	James R. Heath – Ins Seattle, USA	ATION I titute for Systems Biolo	ogy
09:15 - 09:30	Transition		
09:30 - 10:30	SESSION 1A1 Exosomes Trapping and Isolation	SESSION 1B1 Particle Separation	SESSION 1C1 Synthetic Biology Using Droplets
10:30 - 11:00	Break: Exhibit and I	Poster Inspection	
11:00 - 12:20	SESSION 1A2 Single Cell Analysis (Secretion)	SESSION 1B2 Reconfigurable & Self-Powered Dev.	SESSION 1C2 Separation and Assays in Droplets
12:20 - 13:10	Grab 'n Go Lunch		
13:10 - 13:15	Analytical Chemistr	y – Young Innovator	Award Presentation
13:15 - 14:00	PLENARY PRESENTATION II Keisuke Goda — University of Tokyo Tokyo, JAPAN		
14:00 - 16:30	Poster Session 1 an	d Exhibit Inspection	
16:30 - 18:00	SESSION 1A3 Single-Cell Analysis	SESSION 1B3 Organs on Chip	SESSION 1C3 Genetic Engineering
	KEYNOTE PRESENTATION Angela Wu	KEYNOTE PRESENTATION Adrian Roth	KEYNOTE PRESENTATION Randall J. Platt
18:00 - 19:30	MicroTAS Student N	/lixer	
18:00	Women's Faculty Ev	rent	
	TUESDAY	, 29 OCTOBER	
08:15 - 08:30	Announcements		
08:30 - 09:15	PLENARY PRESENTA Stefan W. Hell – Max Göttingen, GERMANY	ATION III Planck Institute for Bio	physical Chemistry
09:15 - 09:30	Transition		
09:30 - 10:50	SESSION 2A1 Exosomes and Extracellular Vesicles	SESSION 2B1 Paper Microfluidics and Devices	SESSION 2C1 Culture for Cells, Organisms & Plants
10:50 - 11:20	Break: Exhibit and F	Poster Inspection	AAA
11:20 - 12:20	Industrial Forum Session		
12:20 - 12:35	MicroTAS 2020 Ann	ouncement	5-1
12:35 - 14:00	Grab 'n Go Lunch		
12:40 - 14:00	Industrial Stage 1 (Singapore Room)		
14:00 - 16:30	Poster Session 2 and Exhibit Inspection		
16:30 - 18:00	SESSION 2A3 Circulating Tumor Cells	SESSION 2B3 Immunoassays and POC Devices	SESSION 2C3 Nanochannels
1 1	KEYNOTE PRESENTATION Catherine Alix-Panabières	KEYNOTE PRESENTATION Dhananjaya Dendukuri	KEYNOTE PRESENTATION David Sinton

CONFERENCE AT A GLANCE

WEDNESDAY OF COTODED				
08:15 - 08:30	WEDNESDAY, 30 OCTOBER			
00:10 - 00:30	Announcements			
08:30 - 09:15	PLENARY PRESENTATION IV Peng Yin — Harvard University Boston, USA			
09:15 - 09:30	Transition			
00.00 10.00	SESSION 3A1	SESSION 3B1	SESSION 3C1	
09:30 - 10:30	Pathogen Detection & Analysis	Devices for Detection and Imaging	Surface Patterning	
10:30 - 11:00	Break: Exhibit and F	Poster Inspection		
	SESSION 3A2	SESSION 3B2	SESSION 3C2	
11:00 - 12:20	Blood Cell and Blood Flow Analysis	3D Writing and Printing	Active Particles and Particle Assemblies	
12:20 - 13:10	Grab 'n Go Lunch			
12:25 - 13:05	Industrial Stage 2 (S	Singapore Room)		
13:10 - 13:55		PLENARY PRESENTATION V Zulfiqar A. Bhutta — Hospital for Sick Children Toronto, CANADA		
13:55 - 14:15	Lab on a Chip and D Lectureship Prize a	olomite – Pioneers i nd Presentation	n Miniaturization	
14:15 - 16:45	Poster Session 3 an	d Exhibit Inspection		
14:30 - 14:45		Chip – Art in Science nemistry Booth Numbe		
16:00	Exhibitor Raffle (in 2	Zurich Instruments Boo	th # 7 - Ground Floor)	
16:15 - 16:45	Break			
10.45 10.45	SESSION 3A3 Spheroids and	SESSION 3B3 Manipulation	SESSION 3C3 Nanopores and	
16:45 - 18:15	Organoids	of Cells	Nanochannels	
	KEYNOTE PRESENTATION Jianhua Qin	KEYNOTE PRESENTATION Cullen R. Buie	KEYNOTE PRESENTATION Sumita Pennathur	
19:00 - 23:00	Conference Banque	t		
	THURSDA	Y, 31 OCTOBER		
	SESSION 4A1	SESSION 4B1	SESSION 4C1	
08:45 - 10:15	Droplet Microfluidics Interfaced with Mass	Wearables	Biofibers Dynamics and Assemblies at	
	Spectrometry		the Microscale	
	KEYNOTE PRESENTATION Detlev Belder	KEYNOTE PRESENTATION Stéphanie P. Lacour	KEYNOTE PRESENTATION Rikiya Watanabe	
10:15 - 10:45	Break: Exhibit and F	Poster Inspection	l.	
	SESSION 4A2	SESSION 4B2	SESSION 4C2	
10:45 - 11:45	Analysis of Neutrophils for	Centrifugal Platforms	Gas Control for Cells	
	Diagnosis of Sepsis and Inflammation			
11:45 - 11:50	Transition			
11:50 - 12:35	PLENARY PRESENTATION VI Aleksandra Radenovic — École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SWITZERLAND			
12:35 - 13:15	AWARDS			
13:15	Closing Remarks - Conference Adjourns			

INDUSTRIAL STAGE

TUESDAY, 29 OCTOBER

12:40 - 14:00

Industrial Stage Presentations will be held in Singapore Room, Second Floor.

INDUSTRIAL STAGE 1a

12:40 - 13:00

NEW APPLICATIONS IN PRESSURE CONTROL AND DROPLET GENERATION IN MICROFLUIDICS

Presenter: France Hamber

Fluigent www.fluigent.com

Fluigent's broad range of solutions for use in microfluidic technologies and nanofluidics applications offer greater control, automation, precision, and ease of use. If you're seeking to replace high-precision syringe pumps or other conventional instruments, we offer excellent solutions that minimize contamination and ensure full control of flow rates. In this industrial stage, we will present our new solutions and applications in pressure control and droplet generation.

INDUSTRIAL STAGE 1b

13:00 - 13:20

SE ROLE HEN VALYRĪHA KORZION ISSE MICROFLUIDICS – THE USEFULNESS OF VALYRIAN STEEL FOR MICROFLUIDICS

Presenter: Holger Becker

microfluidic ChipShop GmbH www.microfluidic-chipshop.com

In the transfer from academic lab work to a commercial microfluidics product, materials and manufacturing methods play a decisive role. This presentation will point out some of the critical stumbling blocks during this transition together with suggestions on how to select materials and manufacturing methods to make academic microfluidic designs scaleable for a later industrial manufacturing.

INDUSTRIAL STAGE 1c

13:20 - 13:40

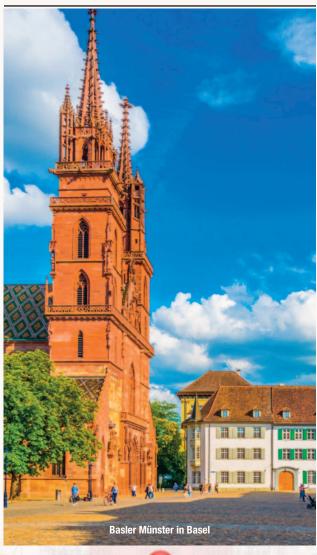
THE TASTE OF PRECISION Presenter: Melanie Büttner

CETONI GmbH www.cetoni.de

Microfluidic biological as well as chemical applications are not only characterized by contrasts such as resistance to harsh chemicals vs. sterility of the system, they also have one thing in common: precise and pulsation-free fluid delivery. The unique modularity of the CETONI-system allows a variety of applications merged with our software to automate these processes. In this presentation we show how the different advantages of the neMESYS syringe pump series can be used for customer-specific applications. And a short insight about a customer setup will be given. A compact setup for precise and reproducible delivery of liquid taste stimuli was developed. The high precision and easy usability of the neMESYS syringe pumps, combined with an elaborated setup, allowed the researchers to present taste stimuli with high precision to earn reproducible results.

INDUSTRIAL STAGE

INDUSTRIAL STAGE 1d


13:40 - 14:00

INTEGRATION TECHNOLOGIES FOR NEXT-GENERATION MICROFLUIDIC DEVICES

Presenter: Bernd Dielacher

EVG Group (EVG) www.evgroup.com

As Lab-on-a-Chip devices are increasingly getting more complex including components of different form factors and materials, thus advanced and scalable integration processes are required. As a market leading supplier of wafer bonding and nanoimprint lithography (NIL) equipment, we will demonstrate how these technologies are applied to microfluidics chips. We will discuss processes for hybrid integration schemes such as CMOS integration and will show how NIL can be used to integrate on-chip optical bio-sensing by nanometer-scale resolution patterns.

INDUSTRIAL STAGE

WEDNESDAY, 30 OCTOBER

12:25 - 13:05

Industrial Stage Presentations will be held in Singapore Room, Second Floor.

INDUSTRIAL STAGE 2a

12:25 - 12:45

DIAGNOSTIC CONSUMABLES: WHERE IS THIS CHALLENGING MARKET HEADED?

Presenter: James Downs

SCHOTT NEXTERION® www.schott.com/nexterion

The growth in the use of automated health-care related diagnostic consumables is exploding. However, creating these consumables can be quite challenging. Globally, profound scientific advances are occurring in medical diagnostic technologies. These technologies will play an increasingly important role in delivering more efficient medical care as our health care systems are burdened by multiple demographic and cost factors. However, harnessing these advances in such a way as to functionalize them into a miniaturized consumable will require both a deep understanding of the underlying technical challenges and a broad set of manufacturing capabilities to overcome them. As a published economist whose focus is on innovation in highly knowledge-intensive industries, in this presentation, James Downs will overview the particular challenges of this dynamic environment and highlight the capabilities needed to address them effectively.

INDUSTRIAL STAGE 2b

12:45 - 13:05

SENSORS FOR ONLINE MONITORING OF O₂, PH AND CO₂ IN MICROFLUIDICS Presenter: Daniela Obermaier

PreSens Precision Sensing GmbH www.presens.de

Cell and μ -tissue culture in microfluidics gained huge popularity during the past years. Small volumes and controlled geometry makes microfluidics a perfect tool to conduct fast and reproducible experiments. On the way towards mimicking physiological *in vivo* conditions in microfluidics, the volume restrictions and its implications on e.g. oxygen and nutrient availability have to be kept carefully in mind. Monitoring of important culture parameters is crucial but challenging in microfluidics and millifluidics. Optical chemical sensors are perfectly suited for this purpose since they allow for minimal or even non-invasive monitoring in very small volumes. We present different sensor formats for online monitoring of oxygen, pH and carbon dioxide in microfluidic chips.

PLENARY SPEAKERS

MONDAY, 28 OCTOBER

Seattle, USA

08:30 - 09:15

Plenary Presentation I ENGINEERED TOOLS FOR IMMUNOTHERAPIES James R. Heath Institute for Systems Biology

Plenary Presentation II INTELLIGENT IMAGE-ACTIVATED CELL **SORTING & BEYOND** Keisuke Goda University of Tokyo Tokyo, JAPAN

TUESDAY, 29 OCTOBER

08:30 - 09:15

Plenary Presentation III MINIFLUX NANOSCOPY: SUPERRESOLUTION POST NOBEL Stefan W. Hell Max Planck Institute for Biophysical Chemistry Göttingen, GERMANY

WEDNESDAY, 30 OCTOBER

08:30 - 09:15

Plenary Presentation IV **ENGINEERING DNA DEVICES TO ADVANCE BIOIMAGING** AND BIOSENSING **Peng Yin** Harvard University

13:10 - 13:55

Plenary Presentation V

Boston, USA

ADDRESSING NEWBORN SURVIVAL GLOBALLY: THE ROLE OF INNOVATIONS IN MOVING FROM POLICY TO ACTION Zulfigar A. Bhutta Hospital for Sick Children

Toronto, CANADA

THURSDAY, 31 OCTOBER

11:50 - 12:35

Plenary Presentation VI

A TALE OF SINGLE PORE IN QUASI 2D MEMBRANES

Aleksandra Radenovic

École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SWITZERLAND

KEYNOTE SPEAKERS

MONDAY, 28 OCTOBER

16:45 - 17:15

Session 1A3 - Single-Cell Manipulation & Analysis
CHARACTERIZATION OF OPTIMAL CULTURE CONDITIONS
FOR MICROFLUIDIC 3D VASCULATURE-ON-CHIP
Angela Wu

Hong Kong University of Science and Technology Hong Kong, HONG KONG

Session 1B3 - Organs on Chip

ADVANCED CELL MODELS, ORGANS ON CHIPS & MICROPHYSIOLOGICAL SYSTEMS AS INNOVATIVE TOOLS TO SUPPORT DRUG DEVELOPMENT Adrian Roth

Roche Innovation Center Basel, SWITZERLAND

Session 1C3 - Genetic Engineering

TRANSCRIPTIONAL RECORDING BY CRISPR SPACER ACQUISITION FROM RNA

Randall J. Platt ETH Zürich Basel, SWITZERLAND

TUESDAY, 29 OCTOBER

16:30 - 17:00

Session 2A3 - Circulating Tumor Cells & Cancer Therapy CIRCULATING TUMOR CELLS AS LIQUID BIOPSY: FINDING RARE EVENTS FOR A HUGE KNOWLEDGE OF CANCER DISSEMINATION Catherine Alix-Panabières

University of Montpellier Montpellier, FRANCE

Session 2B3 - Immunoassays & Point-of-Care Devices

A POINT-OF-CARE IMMUNOASSAY PLATFORM FOR THYROID FUNCTION BASED ON HYDROGEL SENSORS EMBEDDED INSIDE A MICROFLUIDIC DEVICE Dhananjaya Dendukuri

Achira Labs, Pvt. Ltd. Bangalore, INDIA

Session 2C3 - Nanochannels

NANOFLUIDICS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS

David SintonUniversity of Toronto
Toronto, CANADA

KEYNOTE SPEAKERS

WEDNESDAY, 30 OCTOBER

Dalian, CHINA

Cambridge, USA

16:45 - 17:15

Session 3A3 - Spheroids & Organoids

ORGANOIDS-ON-CHIPS TO ADVANCE HEALTH SCIENCE

Jianhua Qin

Chinese Academy of Sciences

Session 3B3 - Manipulation of Cells
AUTOMATED MICROFLUIDIC GENETIC MANIPULATION
FOR HIGH THROUGHPUT BIOLOGY
Cullen R. Buie
Massachusetts Institute of Technology

Session 3C3 - Nanopores & Nanochannels
BIPOLAR ELECTRODES FOR MICROFLUIDIC PUMPING
Sumita Pennathur
University of California, Santa Barbara
Santa Barbara, USA

THURSDAY, 31 OCTOBER

Leipzig, GERMANY

Saitama, JAPAN

Session 4B1 - Wearables

08:45 - 09:15

Session 4A1 - Droplets, Mass. Spectrometry or OMICS
INTERFACING DROPLET CHIPS TO
MASS SPECTROMETRY
Dettev Belder
University of Leipzia

SKIN-LIKE, MICROFABRICATED GALLIUM-BASED SENSORS FOR MOTION CAPTURE Stéphanie P. Lacour École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SWITZERLAND

at the Microscale
MICROSYSTEMS FOR SINGLE MOLECULE ANALYSIS
OF MEMBRANE PROTEINS
Rikiya Watanabe
RIKEN

Session 4C1 - Biofibers Dynamics & Assemblies

SPEAKER CORNER

Meet with Plenary and Keynote presenters after their talk to ask questions that there may not have been time for. The Speaker Corner will be located in the Second Floor Foyer outside the meeting rooms on the following days and times.

MONDAY, 28 OCTOBER

10:30	Plenary	Speaker	I – James R. Heath
-------	---------	---------	--------------------

14:00 Plenary Speaker II – Keisuke Goda

TUESDAY, 29 OCTOBER

10:50 Plenary Speaker III – Stefan W. Hell

Keynote Speaker Session 1A3 – Angela Wu

Keynote Speaker Session 1B3 – Adrian Roth

18:00 Keynote Speaker Session 2A3 – Catherine Alix-Panabières

Keynote Speaker Session 2B3 - Dhananjaya Dendukuri

Keynote Speaker Session 2C3 - David Sinton

WEDNESDAY, 30 OCTOBER

10:30	Plenary S	peaker IV –	Peng Yin
-------	-----------	-------------	----------

14:15 Plenary Speaker V – Zulfigar A. Bhutta

18:15 Keynote Speaker Session 3A3 – Jianhua Qin

Keynote Speaker Session 3B3 - Cullen R. Buie

Keynote Speaker Session 3C3 – Sumita Pennathur

THURSDAY, 31 OCTOBER

10:15 Keynote Speaker Session 4A1 – Detlev Belder

Keynote Speaker Session 4B1 - Stéphanie P. Lacour

13:20 Plenary Speaker VI – Aleksandra Radenovic

TECHNICAL PROGRAM INFORMATION

Parallel Oral Sessions

Each day papers will be presented in three parallel sessions. There will be a total of 99 oral sessions throughout the Conference.

Guide to Understanding Session Numbering

Each session in the technical program is assigned a unique number which clearly indicates when and where the session is presented. The number of each session is shown before the session title.

Session Number: 1A1

The first character (i.e., 1) indicates the day of the Conference:

1 = Monday 3 = Wednesday 2 = Tuesday 4 = Thursday

The second character (i.e., A) indicates which room the session is held in:

A = San Francisco, Third Floor
 B = Singapore, Second Floor
 C = Sydney, Second Floor

The third character (i.e., $\mathbf{1}$) shows the sequence the session is held during the day:

1 = Concurrent Session 1 - morning

2 = Concurrent Session 2 - late-morning

3 = Concurrent Session 3 - afternoon

Posters

Three poster sessions will be held on two floors of the Congress Center on Monday, Tuesday, and Wednesday. Posters 1 - 82 will be located on the ground floor. Posters 83 - 248 will be located on the first floor. All posters are listed with their assigned number and day that they are on display. Authors will be available for questions during their appointed time. Posters are color coded by day and classification to coordinate with the poster floor plan on the last page of this program.

Guide to Understanding Poster Numbering

Each poster is assigned a unique number which clearly indicates when and where the poster is presented. The number of each poster is shown before the title.

Poster Number: M001a

The first character (i.e., \mathbf{M}) indicates the day of the Conference that the poster will be on display.

M = Monday T = Tuesday W = Wednesday

The second character (i.e., 001) is the poster board position on the floor plan. The last character (i.e., a) shows the classification color of the poster.

ASSIFICATION

- a Cells, Organisms and Organs on a Chip
- b Chemical Applications: Separations, Mixers and Reactions
- c Diagnostics, Drug Testing & Personalized Medicine
- d Fundamentals in Microfluidics and Nanofluidics
- e Micro- and Nanoengineering
- f Sensors and Detection Technologies
- g Other Applications of Microfluidics
- h Late News

E THE DATE!

October 4-8, 2020

Palm Springs Convention Center

CALIFORNIA, USA

Conference Chairs:

Amy E. Herr - University of California, Berkeley, USA Joel Voldman - Massachusetts Institute of Technology, USA

sponsored by

cbmsociety.org/microtas2020

SUNDAY PROGRAM

SUNDAY, 27 OCTOBER

<u> </u>	UNDAY, 27 OCTOBER
08:30	Workshop Registration
09:00 - 12:00	Morning Workshops
Workshop 1	DESIGN TOOLS FOR MICROFLUIDIC DEVICES Robert Wille ¹ , Jan Madsen ² , and Ulf Schlichtmann ³ ¹ Johannes Kepler University, AUSTRIA, ² Technical University of Denmark, DENMARK, and ³ Technische Universität München, GERMANY
Workshop 2	COMMERCIALIZATION OF MICROFLUIDIC DEVICES AND SYSTEMS Holger Becker microfluidic ChipShop GmbH, GERMANY
Workshop 3	CARING FOR CELLS IN MICROSYSTEMS: ENSURING CELL-SAFE DEVICE DESIGN AND OPERATION Sarvesh Varma and Joel Voldman Massachusetts Institute of Technology, USA
Workshop 4	AC ELECTROKINETICS IN MICROSYSTEMS FOR SINGLE-CELL CYTOMETRY, MANIPULATION AND SENSING Nathan Swami¹ and Federica Caselli² ¹University of Virginia, USA and ²University of Rome Tor Vergata, ITALY
Workshop 5	SPICE UP YOUR CHIPS WITH ELECTRONIC GADGETS AND ARDUINO Yuksel Temiz IBM Research – Zürich, SWITZERLAND
14:00 - 17:00	Afternoon Workshops
Workshop 6	INCORPORATING THE NEEDS OF USERS INTO POINT-OF-CARE DIAGNOSTICS Jaqueline Linnes Purdue University, USA
Workshop 7	OPEN-SPACE MICROFLUIDICS: CONCEPTS, IMPLEMENTATIONS AND APPLICATIONS Govind Kaigala ¹ , Patrick Misun ² , and Tomaso Zambelli ² ¹ IBM Research – Zürich, SWITZERLAND and ² ETH Zürich, SWITZERLAND
Workshop 8	LIVE CELL IMAGING IN MICROFLUIDICS Tom Lummen¹, Oliver Biehlmaier², and Gregor Schmidt¹ ¹ETH Zürich, SWITZERLAND and ²University of Basel, SWITZERLAND
Workshop 9	3D PRINTING TOOLS Michael Breadmore ¹ , Rosanne Guijt ² , Greg Nordin ³ , and Egan Doeven ² ¹ University of Tasmania, AUSTRALIA, ² Deakin University, AUSTRALIA, and ³ Brigham Young University, USA
Workshop 10	ORGAN-ON-A-CHIP: MERGING MICROFABRICATION WITH TISSUE ENGINEERING Peter Loskill¹, Olivier Guenat², and Olivier Frey³ ¹Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, GERMANY,²University of Bern, SWITZERLAND, and³InSphero AG, SWITZERLAND
17:00 - 19:00	Conference Registration and Check-In
17:00 - 19:00	Wine & Cheese Welcome Reception

PRECISION ON GLASS

Cost effective
Glass Components
for Life Science,
Diagnostics and
Medical Applications

IMT develops and produces large volumes of consumables, custom-made microfluidic devices, optical components and sensors in glass and quartz.

Capabilities

- Structured metallic and dielectric coatings
- Etching of channels and nanopatterns
- Integration of on-chip electrodes, waveguides, optical filters and chemical (bio-)functionalization materials

Applications

- Sequencing
- Lab-on-a-Chip
- Organ-on-a-Chip
- Single Cell Detection
 Analysis
- HTS
- microarrays
- Glass components for medical instruments & equipment

Flow Cell for Next Generation Sequencing

ISO 9001:2015

MONDAY AT A GLANCE

07:00 - 18:15	Registration		
08:00 - 08:30	Opening Remarks		
08:30 - 09:15	PLENARY PRESENTATION I James R. Heath – Institute for Systems Biology Seattle, USA		
09:15 - 09:30	Transition		
09:30 - 10:30	SESSION 1A1 Exosomes Trapping and Isolation	SESSION 1B1 Particle Separation	SESSION 1C1 Synthetic Biology Using Droplets
10:30 - 11:00	Break: Exhibit and F	Poster Inspection	
11:00 - 12:20	SESSION 1A2 Single Cell Analysis (Secretion)	SESSION 1B2 Reconfigurable and Self-Powered Devices	SESSION 1C2 Separation and Assays in Droplets
12:20 - 13:10	Grab 'n Go Lunch		
13:10 - 13:15	Analytical Chemistry – Young Innovator Award Presentation Award Recipient: Keisuke Goda, <i>University of Tokyo, JAPAN</i>		
13:15 - 14:00	PLENARY PRESENTATION II Keisuke Goda — University of Tokyo Tokyo, JAPAN		
14:00 - 16:30	Poster Session 1 and Exhibit Inspection		
16:00 - 16:30	Break		
16:30 - 18:00	SESSION 1A3 Single-Cell Manipulation and Analysis	SESSION 1B3 Organs on Chip	SESSION 1C3 Genetic Engineering
	KEYNOTE PRESENTATION Angela Wu	KEYNOTE PRESENTATION Adrian Roth	KEYNOTE PRESENTATION Randall J. Platt
18:00 - 19:30	MicroTAS Student N	lixer	
18:00	Women's Faculty Event		

MONDAY, 28 OCTOBER

07:00	Registration
08:00	Opening Remarks CBMS President Nicole Pamme, University of Hull, UK
	Canton of Basel-Stadt Dr. Conradin Cramer, Head of the Education Department
	MicroTAS 2019 Conference Chairs Petra S. Dittrich, ETH Zürich, SWITZERLAND Andreas Hierlemann, ETH Zürich, SWITZERLAND Emmanuel Delamarche, IBM Research – Zürich, SWITZERLAND

PLENARY PRESENTATION I

Chair: Amy Herr, University of California Berkeley, USA

San Francisco Room

08:30 ENGINEERED TOOLS FOR IMMUNOTHERAPIES

James R. Heath

Institute for Systems Biology, Seattle, USA

09:15 Transition

Session 1A1 - Exosomes Trapping and Isolation Chair: Felix Kurth, CSEM, SWITZERLAND

San Francisco Room

09:30 MULTINODAL HIGH THROUGHPUT ACOUSTIC TRAPPING OF EXOSOMES FROM URINE SAMPLES

Axel Broman, Andreas Lenshof, Mikael Evander, Anson Ku, Yvonne Ceder, and Thomas Laurell *Lund University, SWEDEN*

09:50 DIRECT AND SCALABLE ISOLATION OF CIRCULATING EXOSOMES FROM WHOLE BLOOD USING CENTRIFUGAL FORCES

Hui Min Tay¹, Sheng Yuan Leong¹, Megha Upadya¹, Fang Kong¹, Hong Kit Lim¹, Rinkoo Dalan², Chor Yong Dalton Tay¹, Ming Dao^{1,3}, and Han Wei Hou¹

¹Nanyang Technological University, SINGAPORE,

²Tan Tock Seng Hospital, SINGAPORE, and

³Massachusetts Institute of Technology, USA

10:10 SEPARATION OF SINGLE EXOSOMES UTILIZING A COMPOSITE NANOFLUIDIC STRUCTURE

Haruka Ishibashi¹, Osamu Ishibashi¹, Aya Horikawa¹, Mika Hayashi¹, and Yan Xu^{1,2}

¹Osaka Prefecture University, JAPAN and

²Japan Science and Technology Agency (JST), JAPAN

Session 1B1 - Particle Separation

Chair: Rune Barnkob, Technical University of Munich, GERMANY

Singapore Room

09:30 MINIATURIZATION OF HYDROCYCLONES: THEORETICAL AND EXPERIMENTAL EXPLORATION

Jung Y. Han, Beqir Krasniqi, Jung Kim, Melissa Keckley, and Don L. DeVoe

University of Maryland, USA

09:50 THE SEPARATION OF NANO-SIZED PARTICLES IN MICRO-SCALED POST ARRAYS

Jason P. Beech¹, Kevin Keim², Bao Dang Ho¹, Carlotta Guiducci², and Jonas O. Tegenfeldt¹

¹Lund University, SWEDEN and

²École Polytechniqu<mark>e Fédé</mark>rale de Lau<mark>sanne</mark>, (EPFL) SWITZERLAND

10:10 SIZE-BASED BIOMOLECULAR SEPARATION ENABLED BY FIELD-EFFECT ELECTROOSMOSIS

Vesna Bacheva^{1,2}, Federico Paratore^{1,2}, Shimon Rubin¹, Govind V. Kaigala², and Moran Bercovici¹ ¹Technion - Israel Institute of Technology, ISRAEL and ²IBM Research – Zürich, SWITZERLAND

Session 1C1 - Synthetic Biology Using Droplets Chair: Steve Shih, Concordia University, CANADA

Sydney Room

09:30 DROPLET-BASED MICROFLUIDICS FOR BOTTOM-UP SYNTHETIC BIOLOGY

Thomas Beneyton¹, Dorothee Krafft², Celina Love³, Mathias Girault¹, Claudia Bednarz², Christin Kleineberg², Christian Woelfer², Ivan Ivanov², Tanja Vidakovic-Koch², Kai Sundmacher², T.-Y. Dora Tang³, and Jean-Christophe Baret¹

1 University of Bordeaux, FRANCE and ²Max Planck Institute, GERMANY

09:50 CREATION OF DNA MICRODROPLETS BASED ON PHASE TRANSITION AND SEQUENCE DESIGN

Yusuke Sato, Tetsuro Sakamoto, and Masahiro Takinoue Tokyo Institute of Technology, JAPAN

10:10 A VERSATILE AND ROBUST DROPLET-BASED MICROFLUIDIC AUTOMATION SYSTEM FOR HIGH-THROUGHPUT OPTIMIZATION OF BIOSYNTHETIC PATHWAYS

Kosuke Iwai^{1,2}, Maren Wehrs^{1,3}, Peter W. Kim^{1,2}, Jess Sustarich^{1,2}, Trent R. Northen^{1,3,4}, Hector Garcia Martin^{1,3}, Paul D. Adams^{1,3,5}, and Anup K. Singh^{1,2}

¹Joint BioEnergy Institute, USA, ²Sandia National Laboratories, USA, ³Lawrence Berkeley National Laboratory, USA, ⁴DOE Joint Genome Institute, USA, and ⁵Univeristy of California, Berkeley, USA

10:30 Speaker Corner (see page 7)

10:30 Break: Exhibit and Poster Inspection

Session 1A2 - Single Cell Analysis (Secretion)

Chair: Joel Voldman, Massachusetts Institute of Technology, USA

San Francisco Room

11:00 PRESCIENT: A PLATFORM FOR THE RAPID EVALUATION OF SINGLE CELL PRODUCED ANTIBODY SUCCESS USING INTEGRATED MICROFLUIDIC-ENABLED TECHNOLOGY

Jose A. Wippold¹, Han Wang^{1,2}, Joseph Tingling², Julian Leibowitz², Paul Defigueiredo², and Arum Han¹

1 Texas A&M University, USA and ²Tsinghua University, CHINA

11:20 METABOLIC CHARACTERIZATION OF INDIVIDUAL IGG-SECRETING CELLS

Mira ElKhoury¹, Guilhem Chenon¹, Andrew D. Griffiths¹, Jean Baudry¹, and Klaus Eyer^{1,2} ¹École Supérieure de Physique et de Chimie Industrielles (ESPCI), FRANCE and ²ETH Zürich, SWITZERLAND

11:40 SYNCHRONIZED DROP-SCREENING/SORTING FOR SINGLE CELL SECRETION MEASUREMENTS

Guoyun Sun, Ming <mark>Wang,</mark> and Chia-H<mark>ung C</mark>hen National University of Singapore, SINGAPORE

12:00 DEMOCRATIZED HIGH-THROUGHPUT SINGLE-CELL SECRETION SCREENING USING DROPLETS FORMED BY STRUCTURED MICROPARTICLES

Joseph de Rutte, Robert Dimatteo, Mark van Zee, Robert Damoiseaux, and Dino Di Carlo University of California, Los Angeles, USA

Session 1B2 - Reconfigurable and Self-Powered Devices Chair: Sally Peyman, University of Leeds, UK

Singapore Room

11:00 RECONFIGURABLE MICROFLUIDICS: REAL-TIME SHAPING OF VIRTUAL CHANNELS THROUGH HYDRODYNAMIC FORCES

David Taylor^{1,2} and Govind Kaigala² ¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and ²IBM Research – Zürich, SWITZERLAND

11:20 LIQUID CIRCUITS IMPLEMENTED USING SMARTPHONE-CONTROLLED VALVES AND SELF-VENTED CHANNELS

Yuksel Temiz, Yulieth Arango, Onur Gökçe, and Emmanuel Delamarche IBM Research – Zürich, SWITZERLAND

11:40 DNA-ONLY BIOASSAY FOR SIMULTANEOUS DETECTION OF PROTEIN AND NUCLEIC ACID TARGETS ON THE SELF-POWERED ISIMPLE CHIP Aida Montserrat, Saba Safdar, Karen Ven, Francesco Dal Dosso, Jeroen Lammertyn, and Dragana Spasic KU Leuven, BELGIUM

12:00 SINGLE LAYER DOMINO CAPILLARICS FOR PERFORMING ADVANCED AUTONOMOUS BIOASSAYS

Mohamed Yafia, Andy Ng, Oriol Ymbern, and David Juncker McGill University, CANADA

Session 1C2 - Separation and Assays in Droplets
Chair: Fan-Gang Tseng, National Tsing Hua University, TAIWAN

Sydney Room

11:00 DROPLET-BASED SINGLE EXTRACELLULAR VESICLE PROTEIN PROFILING FOR THE IMPROVEMENT OF IMMUNOTHERAPY

Jina Ko¹, Yongcheng Wang², Angela Marquad¹, Jonathan Carison¹, David Weitz², and Ralph Weissleder¹

1 Massachusetts General Hospital, USA and 2 Harvard University, USA

11:20 DROPLET-BASED INVESTIGATION OF A BIOCHEMICAL BISTABLE CIRCUIT FOR SENSITIVE AND NOISE-FREE DETECTION OF NUCLEIC ACIDS

Robin Deteix¹, Nicolas Lobato-Dauzier¹, Elia Henry², Shu Okumura¹, Guillaume Gines³, Yannick Rondelez³, Teruo Fujii¹, and Anthony J. Genot⁴

1 University of Tokyo, JAPAN, ²François Jacob Institute of Biology-INSERM/CEA, FRANCE, ³PSL Research University, FRANCE, and ⁴LIMMS-IIS/CNRS, JAPAN

11:40 IN-DROPLET SEPARATION OF PROTEINS AND NUCLEIC ACIDS Mario A. Saucedo-Espinosa, Elisabeth F. Hirth, and Petra S. Dittrich ETH Zürich, SWITZERLAND

12:00 ELECTROPHYSIOLOGICAL ANALYSIS OF A642 IN PLANAR LIPID BILAYER IMITATING NERVOUS CELL-MEMBRANE

Yuri Numaguchi, Ke<mark>isuke</mark> Shimizu, K<mark>aori Ts</mark>ukakoshi, Kazunori Ikebukuro, and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN

12:20 Grab 'n Go Lunch

13:10 Analytical Chemistry – Young Innovator Award Presentation Award Recipient: Keisuke Goda, *University of Tokyo, JAPAN*

PLENARY PRESENTATION II

Chair: Je-Kyun Park, Korea Advanced Institute of Science and Technology (KAIST), KOREA

San Francisco Room

INTELLIGENT IMAGE-ACTIVATED CELL SORTING & BEYOND 13:15

Keisuke Goda^{1,2,3}

¹University of Tokyo, Tokyo, JAPAN, ²Wuhan University, CHINA, and 3 University of California, Los Angeles, USA

14:00 Speaker Corner (see page 7)

14:00 Poster Session 1 and Exhibit Inspection

Ground Floor and First Floor

Poster presentations are listed by topic category with their assigned number starting on page 40.

16:00 Break

Session 1A3 - Single-Cell Manipulation and Analysis Chair: Séverine Le Gac, University of Twente, THE NETHERLANDS

San Francisco Room

16:30 **Keynote Presentation**

CHARACTERIZATION OF OPTIMAL CULTURE CONDITIONS FOR MICROFLUIDIC 3D VASCULATURE-ON-CHIP

Sin Yen Tan and Angela R. Wu

Hong Kong University of Science and Technology, HONG KONG

17:00 MICROFLUIDIC MONITORING HOST-VIRAL INTERACTION AT THE SINGLE-CELL LEVEL

Reya Ganguly¹, Solib Kang¹, Byungjin Lee¹, Si Hyung Jin¹, Yohei Yamuchi², Jaeseong Kim¹, and Chang-Soo Lee¹ ¹Chungnam National University, KOREA and ²University of Bristol, UK

ONE CELL, ONE DROP, ONE CLICK: HYBRID MICROFLUIDIC MAMMALIAN SINGLE-CELL ENGINEERING 17:20

Kenza Samlali, Fatemeh Ahmadi, Angela B.V. Quach, Guy Soffer, and Steve C.C. Shih

Concordia University, CANADA

17:40 ISOLATION OF CIRCULATING FETAL TROPHOBLAST USING

FETAL-CHIP FOR NON-INVASIVE PRENATAL DIAGNOSIS
Huimin Zhang¹, Yuanyuan Yang², Zhi Zhu², and Chaoyong Yang¹.²
¹Shanghai Jiao Tong University School of Medicine, CHINA and ²Xiamen University, CHINA

Session 1B3 - Organs on Chip

Chair: Noo Li Jeon, Seoul National University, KOREA

Singapore Room

16:30 Keynote Presentation

ADVANCED CELL MODELS, ORGANS ON CHIPS & MICROPHYSIOLOGICAL SYSTEMS AS INNOVATIVE TOOLS TO SUPPORT DRUG DEVELOPMENT

Adian Roth

Roche Innovation Center, Basel, SWITZERLAND

17:00 ASSESSING GUT MICROBIOME-LIVER CROSSTALK WITH A MODULAR MICROFLUIDIC PLATFORM

Hsih-Yin Tan, Louis Jun Ye Ong, Chak Ming Leung, Lor Huai Chong, and Yi-Chin Toh National University of Singapore, SINGAPORE

17:20 NANOFABRICATED BONE-ON-CHIP: TOWARDS A BONE REGENERATION MODEL

Victor P. Galvan¹, David Barata¹, Athanasia Zampouka¹, Jiaping Li¹, Bernhard Hesse², Marc Bohner³, and Pamela Habibovic¹ ¹*Maastricht University, THE NETHERLANDS*, ²*European Synchrotron*

Radiation Facility, FRÁNCE, and [®]RMS Foundation, SWITŹERLAND

17:40 INTEGRATION OF *EX-VIVO* PRECISION-CUT LIVER SLICE (PCLS) CULTURE WITH MICROFLUIDIC NMR METABOLOMICS

Bishnubrata Patra¹, Manvendra Sharma¹, Ruby Karsten², Maciej Grajewski², Sabeth Verpoorte², and Marcel Utz¹ ¹University of Southampton, UK and

²University of Groningen, THE NETHERLANDS

Session 1C3 - Genetic Engineering

Chair: Hang Lu, Georgia Institute of Technology, USA

Sydney Room

16:30 Keynote Presentation

TRÁNSCRIPTIONAL RECORDING BY CRISPR SPACER ACQUISITION FROM RNA

Randall J. Platt, Michal Okoniewski, Tanmay Tanna, Mariia Y. Cherepkoka, and Florian Schmidt ETH Zürich, SWITZERLAND

17:00 SPATIALLY-RESOLVED AND MULTIPLEX MICRORNA QUANTIFICATION FROM FORMALIN-FIXED, PARAFFIN-EMBEDDED TISSUE USING NANOLITER WELL ARRAYS

Maxwell B. Nagarajan¹, Augusto M. Tentori¹, Wen Cai Zhang², Frank J. Slack², and Patrick S. Doyle¹

¹Massachusetts Institute of Technology, USA and
²Beth Israel Deaconess Medical Center, USA

17:20 MICRORNA DIAGNOSTICS ON AN ELECTROCHEMICAL BIOSENSOR VIA CRISPR/CAS13A TECHNOLOGY

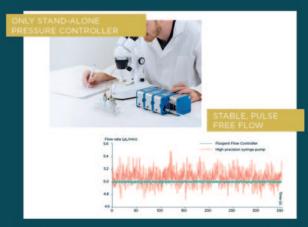
Richard Bruch, Julia Baaske, Claire Chatelle, Wilfried Weber, Gerald A. Urban, and Can Dincer University of Freiburg, GERMANY

17:40 GENE EXPRESSION BASED DRUG SCREENING PLATFORM

Sumin Lee, Seo Woo Song, Junhoi Kim, and Sunghoon Kwon Seoul National University, KOREA

18:00 - 19:30	MicroTAS Student Mixer		
18:00	Women's Faculty Event		

WHY USE FLUIGENT'S MICROFLUIDIC CONTROLLERS?


PRESSURE-BASED FLOW CONTROL

Reliable results

- » Fastest response time
- » Best precision

Easy to use

- » Pulseless and stable flow » Plug and play solutions
 - » Intuitive software
 - » Adaptable and upgradable

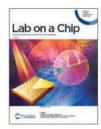
FOR MORE INFORMATION OR A LIVE DEMONSTRATION COME AND VISIT US ON OUR BOOTH #51-52

DNA/RNA Oligonucleotide Synthesis Sanger Sequencing Next Generation Sequencing Contract Research and Outsourcing

Lab on a Chip activities at MicroTAS 2019

Don't miss out:

Pioneers of Miniaturization lecture Hang Lu Georgia Tech, USA 13:55-14:15, Wed 30 October


Art in Science competition award (booth 63)

14:30-14:45, Wed 30 October

The Widmer poster prize announcement

12:45-12:55, Thurs 31 October

Join us at booth 63

Explore our analytical portfolio rsc.li/Analyticalport

Registered charity number: 207890

TUESDAY AT A GLANCE

08:15 - 08:30	Announcements		
08:30 - 09:15	PLENARY PRESENTATION III Stefan W. Hell – Max Planck Institute for Biophysical Chemistry Göttingen, GERMANY		
09:15 - 09:30	Transition		
09:30 - 10:50	SESSION 2A1 Exosomes and Extracellular Vesicles	SESSION 2B1 Paper Microfluidics and Devices	SESSION 2C1 Microfluidic Culture for Cells, Organisms and Plants
10:50 - 11:20	Break: Exhibit and Poster Inspection		
11:20 - 12:20	Industrial Forum Session		
12:20 - 12:35	MicroTAS 2020 Announcement		
12:35 - 14:00	Grab 'n Go Lunch		
12:40 - 14:00	Industrial Stage 1 (Singapore Room) Fluigent, microfluidic ChipShop GmbH, CETONI GmbH, EVG Group (EVG)		
14:00 - 16:30	Poster Session 2 and Exhibit Inspection		
16:00 - 16:30	Break		
16:30 - 18:00	SESSION 2A3 Circulating Tumor Cells and Cancer Therapy	SESSION 2B3 Immunoassays and Point-of-Care Devices	SESSION 2C3 Nanochannels
	KEYNOTE PRESENTATION Catherine Alix-Panabières	KEYNOTE PRESENTATION Dhananjaya Dendukuri	KEYNOTE PRESENTATION David Sinton

TUESDAY, 29 OCTOBER

08:15 Announcements

PLENARY PRESENTATION III

Chair: Petra S. Dittrich, ETH Zürich, SWITZERLAND

San Francisco Room

08:30 MINFLUX NANOSCOPY: SUPERRESOLUTION POST NOBEL

Stefan W. Hell

Max Planck Institute for Biophysical Chemistry, Göttingen, GERMANY Max Planck Institute for Medical Research, GERMANY

09:15 Transition

Session 2A1 - Exosomes and Extracellular Vesicles
Chair: Han Wei Hou, Nanyang Technological University, SINGAPORE

San Francisco Room

09:30 IDENTIFYING EXTRACELLULAR VESICLE POPULATIONS FROM LONG-TERM CULTURED SINGLE CELLS USING

MULTI-COLOR TIRFM

Jonas Nikoloff, Lucas Armbrecht, André Kling, and Petra S. Dittrich ETH Zürich, SWITZERLAND

09:50 PLATELET MEMBRANE CLOCKED SURFACE FOR PLASMONIC SWITCH ON BINDING OF CANCER THREATS

Sumit Kumar, Jae-A Han, Issac J. Michael, and Yoon-Kyoung Cho Ulsan National Institute of Science and Technology (UNIST), KOREA

10:10 NODE-PORE SENSING DEVICE TO DETECT TUMOR-DERIVED EXTRACELLULAR VESICLES

Thomas R. Carey, Jennifer Hall, and Lydia L. Sohn University of California, Berkeley, USA

10:30 HIGHLY SENSITIVE DETECTION OF TUMOR-DERIVED EXTRACELLULAR VESICLES USING AN ENZYMATIC ASSAY AND REDOX CYCLING

Dilu G. Mathew¹, Pepijn Beekman^{1,2}, Serge G. Lemay¹, Séverine Le Gac¹, and Wilfred G. van der Wiel¹ ¹University of Twente, THE NETHERLANDS and ²Wageningen University, THE NETHERLANDS

Session 2B1 - Paper Microfluidics and Devices Chair: Charles Henry, Colorado State University, USA

Singapore Room

09:30 CITIZEN LED SAMPLING TO MONITOR PHOSPHATES IN RIVER WATER USING SIMPLE PAPER MICROFLUIDIC DEVICES

Samantha Richardson, Alexander Iles, Jeanette M. Rotchell, Mark Lorch, and Nicole Pamme University of Hull, UK

09:50 VERSATILE PRINTED MICROHEATERS TO ENABLE LOW-POWER THERMAL CONTROL IN PAPER DIAGNOSTICS

Kristin M. Byers, Li-Kai Lin, Taylor J. Moehling, Lia A. Stanciu, and Jacqueline C. Linnes *Purdue University, USA*

10:10 AN ALL-IN-ONE PAPER-BASED MICROFLUIDIC DEVICE FOR MULTIPLEXED DETECTION OF CARDIAC PROTEIN MARKERS

Hao Fu^{1,2}, Xiao Li^{2,3}, Zhen Qin¹, and Xinyu Liu^{1,2}

¹University of Toronto, CANADA, ²McGill University, CANADA, and
³Stanford University, USA

10:30 MICRO TOTAL ANALYSIS SYSTEM FOR DETERMINATION OF LITHIUM ION IN HUMAN WHOLE BLOOD WITH HYBRID DEVICE OF DMF AND TINY PAPER SENSORS

Takeshi Komatsu¹, Manabu Tokeshi¹, and Shih-Kang Fan² ¹Hokkaido University, JAPAN and²National Taiwan University, TAIWAN

Session 2C1 - Microfluidic Culture for Cells, Organisms and Plants Chair: Stéphanie Descroix, Institut Curie CNRS, FRANCE

Sydney Room

09:30 STANDARDIZED, MODULAR MICROFLUIDIC BUILDING BLOCKS FOR AUTOMATED CELL CULTURING SYSTEMS

Anke Vollertsen, Elsbeth Bossink, Dean de Boer, Jet Spalink, Robert Passier, Albert van den Berg, Loes Segerink, Andries van der Meer, and Mathieu Odijk University of Twente, THE NETHERLANDS

09:50 INTEGRATED MICROFLUIDIC CHIP WITH FLOWING UPSTREAM SPERM SORTING AND ZP REMOVED OOCYTE INCUBATION FOR IN-VITRO FERTILIZATION

Suei-Shen Wang¹, Yung-Chin Tzeng¹, Yueh-Jen Chen¹, Li-Chen Pan², and Fan-Gang Tseng¹.³ ¹National Tsing Hua University, TAIWAN, ²Taipei Medical University, TAIWAN, and ³Research Center for Applied Sciences, TAIWAN

10:10 DROPLET LIQUID EXCHANGER FOR CHEMICAL SCREENS IN CAENORHABDITIS ELEGANS

Guillaume Aubry, Marija Milisavljevic, and Hang Lu Georgia Institute of Technology, USA

10:30 NOVEL MICRO-FLUIDIC CIRCUIT MODEL OF PLANT VASCULAR SYSTEM FOR THE GROWTH NAVIGATION

Ryo Miyake¹, Toshihiro Kasama¹, Maia Godonoga¹, Yoshishige Endo¹, Takumi Okamoto², Tetsushi Koide², Chiharu Sone³, Masashi Komine³, Yukio Yaji³, Yoshihiro Kaneta³, and Atsushi Ogawa³¹

**University of Tokyo, JAPAN, ²Hiroshima University, JAPAN, and³

**Akita Prefectural University, JAPAN

10:50 Speaker Corner (see page 7)

10:50 Break: Exhibit and Poster Inspection

Industrial Forum Session

Moderator: Holger Becker, microfluidic ChipShop GmbH, GERMANY

San Francisco Room

11:20 HOW TO BRING RESEARCH FROM THE BENCH TO THE BEDSIDE, AND ALSO TO UNDERSTAND PITFALLS AND HOW TECHNOLOGY NEEDS TO MAP INTO THE REALITY

NEEDO TO MAI INTO THE REALITY

Panel: Vincent Linder BioMedical Consultant, PORTUGAL
Martin Kopp Roche Diagnostics. SWITZERLAND

Oliver Nolte Center for Laboratory Medicine, SWITZERLAND

Xavier Ding FIND. SWITZERLAND

12:20 MicroTAS 2020 Announcement

12:35 Grab 'n Go Lunch

Industrial Stage 1

Chair: Yuksel Temiz, IBM Research - Zürich, SWITZERLAND

Singapore Room

12:40 1a – NEW APPLICATIONS IN PRESSURE CONTROL AND DROPLET GENERATION IN MICROFLUIDICS

France Hamber Fluigent, FRANCE

13:00 1b – SE ROLE HEN VALYRĪHA KORZION ISSE MICROFLUIDICS – THE USEFULNESS OF VALYRIAN STEEL FOR MICROFLUIDICS

Holger Becker microfluidic ChipShop GmbH, GERMANY

13:20 1c - THE TASTE OF PRECISION

Melanie Büttner CETONI GmbH. GERMANY

13:40 1d – INTEGRATION TECHNOLOGIES FOR NEXT-GENERATION MICROFLUIDIC DEVICES

Bernd Dielacher EVG Group (EVG)

14:00 Poster Session 2 and Exhibit Inspection

Ground Floor and First Floor

Poster presentations are listed by topic category with their assigned number starting on page 40.

16:00 Break

Session 2A3 - Circulating Tumor Cells and Cancer Therapy Chair: Z. Hugh Fan, University of Florida, USA

San Francisco Room

16:30 Keynote Presentation

CIRCULATING TUMOR CELLS AS LIQUID BIOPSY: FINDING RARE EVENTS FOR A HUGE KNOWLEDGE OF CANCER DISSEMINATION

Catherine Alix-Panabieres

University Medical Center of Montpellier, FRANCE

17:00 MICROFLUIDIC 3D CELL SIEVING FOR CLOGGING-FREE RARE CELL ENRICHMENT WITH HIGH-THROUGHPUT AND LARGE VOLUME

ENRICHMENT WITH HIGH-THROUGHPUT AND LARGE VOLUME Jie Cheng^{1,2}, Yiran Zhang³, Yifei Ye^{1,2}, Xizhao Sui⁴, Mingxiao Li², Wenjie Zhao^{1,2}, Xinyu Wei², Hongyan Guo³, Yang Zhao²,

and Chengjun Huang^{1,2}

¹Chinese Äcademy of Sciences, CHINA, ²National Engineering Research Center for Beijing Biochip Technology, CHINA, and ³Peking University People's Hospital, CHINA

17:20 MICROFLUIDIC ISOLATION OF METABOLICALLY ACTIVE CIRCULATING TUMOR CELLS AND CIRCULATING STROMAL CELLS

Kinga Matula¹, Francesca Rivello¹, Aigars Piruska¹, Minke Smits², Niven Mehra², and Wilhelm T.S. Huck¹ ¹Radboud University, THE NETHERLANDS and

²Radboud Institute of Molecular Life Sciences, THE NETHERLANDS

17:40 AUTOMATION & INTEGRATION OF COMPUTER VISION ANALYSIS FOR IMMUNOTHERAPY RESEARCH WITH ON-CHIP

CELL TRAPPING

Chris Tostado¹, Joel Heng², Lucas Ong¹, Joel Voldman³, Ramanuj DasGupta², and Yi-Chin Toh¹

¹National University of Singapore, SINGAPORE, ²Genomic Institute of Singapore, SINGAPORE, and

³Massachusetts Institute of Technology, USA

Session 2B3 - Immunoassays and Point-of-Care Devices Chair: Govind Kaigala, IBM Reserach – Zurich, SWITZERLAND

Singapore Room

16:30 Keynote Presentation

A POINT-OF-CARE IMMUNOASSAY PLATFORM FOR THYROID FUNCTION BASED ON HYDROGEL SENSORS EMBEDDED INSIDE A MICROFLUIDIC DEVICE

Jayeeta Pai, Mithila Azad, Bhavna Goyal, Rajiv Nair, Rakesh Sharma, and Dhananjaya Dendukuri

Achira Labs. INDIA

17:00 MICROGEL TEMPLATED DROPLET ELISA

Vishwesh Shah, Yilian Wang, Joseph de Rutte, Chueh-Yu Wu, and Dino Di Carlo University of California, Los Angeles, USA

17:20 HIGHLY MULTIPLEXED DIGITAL ASSAYS VIA PHASE-CHANGING HYDROGEL BARCODE PARTICLES

Luis F. Alonzo, Samantha A. Byrnes, Priscilla Delgado, Toan Huynh, Bernhard H. Weigl, and Kevin P. Nichols Intellectual Ventures Lab, USA

17:40 A LABEL-FREE PLASMO-FLUIDIC BIOSENSOR FOR ULTRASENSITIVE DETECTION OF VIRAL DISEASES

Xiangchao Zhu, Mustafa Mutlu, and Ahmet Ali Yanik University of California, Santa Cruz, USA

Session 2C3 - Nanochannels

Chair: Jan Eijkel, Univeristy of Twente, THE NETHERLANDS

Sydney Room

16:30 Keynote Presentation

NANOFLUIDICS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS
David Sinton

University of Toronto, CANADA

17:00 NANOFLUIDIC ENZYME REACTOR EXCEEDING LIMIT OF BULK REACTION RATE

Koki Yamamoto¹, Kyojiro Morikawa¹, Koreyoshi Imamura², Hiroyuki Imanaka², and Takehiko Kitamori¹ ¹*University of Tokyo, JAPAN and* ²*Okayama University, JAPAN*

17:20 A NANOFLUIDIC MEMRISTOR BASED ON ION CONCENTRATION POLARIZATION

Yang Bu, Zisun Ahmed, and Levent Yobas Hong Kong University of Science and Technology, HONG KONG

17:40 NANOFLUIDIC FABRICATION AND MANIPULATION OF ATTOLITER DROPLETS

Hiroto Kawagishi¹, Shuichi Kawamata¹, and Yan Xu^{1,2}
¹Osaka Prefecture University, JAPAN and
²Japan Science and Technology Agency (JST), JAPAN

18:00 Speaker Corner (see page 7)

18:00 Adjourn for the Day

by emulseo

High-performance fluorinated surfactant

Specifically designed to stabilize emulsion in microfluidics, FluoSurf helps to generate droplets for biotechnological applications such as dPCR, screening, single-cell analysis, diagnostics.

FluoSurf is biocompatible, stable, reproducible from bach to bach, leak-proof and with a high

FluoSurf is available neat or diluted in fluorinated solvent.

WEDNESDAY AT A GLANCE

WEDNEODAI AI A GEARGE					
08:15 - 08:30	Announcements				
08:30 - 09:15	PLENARY PRESENTATION IV Peng Yin Harvard University, Boston, USA				
09:15 - 09:30	Transition				
09:30 - 10:30	SESSION 3A1 Detection and Analysis of Pathogens	SESSION 3B1 Devices for Detection and Imaging	SESSION 3C1 Surface Patterning		
10:30 - 11:00	Break: Exhibit and F	Poster Inspection			
11:00 - 12:20	SESSION 3A2 Blood Cell and Blood Flow Analysis SESSION 3B2 3D Writing and Printing SESSION 3C2 Active Particles and Particle Assemblies				
12:20 - 13:10	Grab 'n Go Lunch				
12:25 - 13:05	Industrial Stage 2 (Singapore Room) SCHOTT NEXTERION®, PreSens Precision Sensing GmbH				
13:10 - 13:55	PLENARY PRESENTATION V Zulfiqar A. Bhutta Hospital for Sick Children, Toronto, CANADA				
13:55 - 14:15	Lab on a Chip and Dolomite – Pioneers in Miniaturization Lectureship Prize and Presentation				
14:15 - 16:45	Poster Session 3 an	d Exhibit Inspection			
14:30 - 14:45	NIST and Lab on a Chip - Art in Science Award (in Royal Society of Chemistry Booth Number 63, First Floor)				
16:00	Exhibitor Raffle (in Zurich Instruments Booth #7 - Ground Floor)				
16:15 - 16:45	Break				
16:45 - 18:15	SESSION 3A3 Spheroids and Organoids	SESSION 3B3 Manipulation of Cells	SESSION 3C3 Nanopores and Nanochannels		
	KEYNOTE PRESENTATION Jianhua Qin Cullen R. Buie KEYNOTE PRESENTATION Sumita Pennathur				
19:00 - 23:00	Conference Banquet				

WEDNESDAY, 30 OCTOBER

08:15 Announcements

PLENARY PRESENTATION IV

Chair: Nicole Pamme, University of Hull, UK

San Francisco Room

08:30 ENGINEERING DNA DEVICES TO ADVANCE BIOIMAGING AND BIOSENSING

Peng Yin

Harvard University, Boston, USA

09:15 Transition

Session 3A1 - Detection and Analysis of Pathogens Chair: Jacqueline Linnes, Purdue University, USA

San Francisco Room

09:30 MULTIPLEX DROPLET PLATFORM FOR RAPID SINGLE-CELL ANTIBIOGRAM

Pengfei Zhang, Aniruddha Kaushik, Kuangwen Hsieh, and Tza-Huei Wang Johns Hopkins University, USA

09:50 EMBRACING CHAOS – A SIMPLIFIED PLATFORM FOR MULTIPLEXING DIGITAL ASSAYS IN POLYDISPERSE DROPLETS

Samantha A. Byrnes, Tim Chang, Toan Huynh, Luis Alonzo, Caitlin E. Anderson, Lex Ball, Anna Astashkina, Jim McDermott, John Connelly, Bernhard H. Weigl, and Kevin P. Nichols Intellectual Ventures Laboratory, USA

10:10 MICROFLUIDIC PCR-BASED DETECTION OF SUB-ATTOMOLAR PATHOGENIC DNA IN URINE USING HIERARCHICAL SELECTIVE ELECTROKINETIC PRECONCENTRATION

Wei Ouyang and Jongyoon Han Massachusetts Institute of Technology, USA

> Session 3B1 - Devices for Detection and Imaging Chair: Marcel Utz, University of Southampton, UK

Singapore Room

09:30 ELECTRICAL DETECTION OF PATHOGENS BEYOND THE LIMITATION OF DEBYE SCREENING USING GRAPHENE FIELD-EFFECT TRANSISTORS IN MICRODROPLETS

Takao Ono¹, Yasushi Kanai¹, Koichi Inoue¹, Yohei Watanabe², Shin-ichi Nakakita³, Toshio Kawahara⁴, Yasuo Suzuki⁴, and Kazuhiko Matsumoto¹
¹Osaka University, JAPAN, ²Kyoto Prefectural University of Medicine, JAPAN, ³Kagawa University, JAPAN, and ⁴Chubu University, JAPAN

09:50 MINIMAL INSTRUMENT IMMUNOASSAY SYSTEM BY CARTRIDGE-INTEGRATED INKJET PRINTED OPTICAL DETECTION SYSTEM

Sebastian Schattschneider¹, Falk Kemper², Erik Beckert², Peter Miethe³, Andreas Willems⁴, Holger Becker¹, and Claudia Gärtner¹ ***microfluidic ChipShop, GERMANY*; ***Fraunhofer IOF, GERMANY*.

³fzmb GmbH, GERMANY, and ⁴inno-train Diagnostik GmbH, GERMANY

10:10 MICROFLUIDIC DEVICE FOR BIOLOGICAL SAMPLES IMAGING WITH USE OF A MINIATURE MEMS TRANSMISSION ELECTRON MICROSCOPE

Michal Krysztof, Marcin Biaas, and Anna Górecka-Drzazga Wrocław University of Science and Technology, POLAND

Session 3C1 - Surface Patterning Chair: Qun Fang, Zhejiang University, CHINA

Sydney Room

09:30 PIXELATED CHEMICAL DISPLAY: TOWARDS MASSIVELY PARALLEL DYNAMIC SURFACE PROCESSING

Pierre-Alexandre Goyette¹, Dina Dorrigiv^{1,2}, Maude Tremblay¹, Kayla Simeone^{2,3}, and Thomas Gervais^{1,2} ¹Polytechnique Montréal, CANADA, ²Institut du Cancer de Monteréal, CANADA, and ³Université de Montréal, CANADA

09:50 FACILE ASSEMBLY OF LARGE AREA CELL ARRAYS USING PATTERNED ELASTOMERIC SURFACES

Karla Perez-Toralla, Angel Olivera-Torres, Mark Rose, Ruiguo Yang, and Stephen Morin University of Nebraska, USA

10:10 ELECTROKINETIC SCANNING PROBE FOR LOCALIZED SURFACE PATTERNING AND ANALYSIS

Nadya Ostromohov^{1,2}, Baruch Rofman¹, Moran Bercovici¹, and Govind V. Kaigala²

¹IBM Research – Zürich, SWITZERLAND and

²Technion-Israel Institute of Technology, ISRAEL

10:30 Speaker Corner (see page 7)

10:30 Break: Exhibit and Poster Inspection

Session 3A2 - Blood Cell and Blood Flow Analysis Chair: Kae Sato, Japan Women's University, JAPAN

San Francisco Room

11:00 DEFORMABILITY BASED CELL SORTING ENABLING QUALITY CONTROL OF STORED RED BLOOD CELLS

Emel Islamzada^{1,2}, Kerryn Matthews¹, Quan Guo¹, Aline T. Santoso¹, Mark D. Scott^{1,2}, and Hongshen Ma^{1,3}
¹University of British Columbia, CANADA, ²Canadian Blood Services, CANADA, and ³Vancouver General Hospital, CANADA

11:20 PLASMA GENERATION AND LABEL-FREE MONONUCLEAR CELL SEPARATION FROM WHOLE BLOOD BY ONE-STEP ACOUSTIC FOCUSING

Julia Alsved¹, Anke Urbansky², Pelle Ohlsson¹, Klara Petersson¹, Erling Nielsen¹, Agnes Michanek¹, and Per Augustsson² ¹AcouSort AB, SWEDEN and ²Lund University, SWEDEN

11:40 FULLY AUTOMATED LAB-ON-A-DISC FOR LABEL-FREE ENRICHMENT OF HIGHLY PURE PLATELETS FROM WHOLE BLOOD Chi-Ju Kim^{1,2}, Dong Yeob Ki², Juhee Park², Vijaya Sunkara²,

and Yoon-Kyoung Čho^{1,2}

¹Ulsan National Institute of Science and Technology (UNIST), KOREA and

²Institute for Basic Science (IBS), KOREA

12:00 ARTIFICIAL MICROCIRCULATION REPLICAS USING BACKSIDE LITHOGRAPHY FOR BLOOD FLOW ANALYSIS

Marianne Fenech^{1,3}, Vincent Girod², Viviana Claveria³, Sebastien Meance², Manouk Abkarian³, and Benoit Charlot² ¹University of Ottawa, CANADA and ²University of Montpellier, FRANCE

Session 3B2 - 3D Writing and Printing

Chair: Wouter van der Wijngaart, KTH Royal Institute of Technology, SWEDEN

Singapore Room

11:00 DIRECT LASER WRITING OF THREE-DIMENSIONAL GRAPHENE-LADEN MICROSTRUCTURES INSIDE ENCLOSED MICROFLUIDIC CHANNELS

Michael A. Restaino^{1,2}, Noah Eckman¹, Abdullah T. Alsharhan¹, Andrew C. Lamont¹, Asha J. Hall², and Ryan D. Sochol¹ ¹University of Maryland, USA and ²Army Research Laboratory, USA

11:20 OPTO-FLUIDIC 3D PRINTING PLATFORM FOR CELL MICRO-ENVIRONMENT AND TISSUE ENGINEERING

Sandrine Assié-Souleille, Julie Foncy, Victor Fournié, Godefroi Saint Martin, Rémi Courson, Louisa Boyer, Justine Creff, Arnaud Besson, Xavier Dollat, Julien Roul, Emmanuelle Trévisiol, and Laurent Malaquin Université de Toulouse, FRANCE

11:40 MICRO-3D PRINTED NOZZLES AND MIXERS FOR TIME-RESOLVED STRUCTURAL BIOLOGY

Juraj Knoska¹ and Michael Heymann² ¹CFEL, GERMANY and ²MPI of Biochemistry, GERMANY

12:00 NEW 4D PRINTING USING DRY-ERASE MARKER

Seo Woo Song¹, Sumin Lee¹, Jun Kyu Choe², Junwon Kang¹, Jiyun Kim², and Sunghoon Kwon¹

1 Seoul National University, KOREA and
2 Ulsan National Institute of Science and Technology (UNIST), KOREA

Session 3C2 - Active Particles and Particle Assemblies Chair: Chang-Soo Lee, Chungnam National University, KOREA

Sydney Room

11:00 MICROFLUIDIC FABRICATION OF HIERARCHICAL PHOTONIC CRYSTAL MICROSPHERES AND THEIR APPLICATIONS

Juan Wang^{1,2}, Hai Le-The², Lingling Shui¹, Johan G. Bomer², Loes I. Segerink², and Jan Eijkel² ¹South China Normal University, CHINA and ²University of Twente, THE NETHERLANDS

11:20 FABRICATION OF A POROUS MICROPARTICLE WHOSE TRANSPARENCY CHANGE ACCORDING TO THE SURROUNDING ENVIRONMENT

Kibeom Kim and Wook Park

Kyung Hee University, KOREA

11:40 ACTIVE PARTICLES AS MOBILE MICROELECTRODES FOR UNIFIED, DIRECTED AND LABEL-FREE CARGO TRANSPORT AND DELIVERY

Xiaoye Huo, Yue Wu, Sinwook Park, Alicia Boymelgreen, and Gilad Yossifon Technion - Israel Institute of Technology, ISRAEL

12:00 LIGHT-DRIVEN MICRO-ROBOT FOR MICRO-PARTICLE AND CELL MANIPULATION

Shuailong Zhang¹, Erica Scott¹, Nika Shakiba¹, Peter W. Zandstra^{1,2}, and Aaron R. Wheeler¹ ¹University of Toronto, CANADA and ²University of British Columbia, CANADA

12:20 Grab 'n Go Lunch

Industrial Stage 2

Chair: Bastian Rapp, University of Freiburg, GERMANY

Singapore Room

12:25 2a – DIAGNOSTIC CONSUMABLES: WHERE IS THIS CHALLENGING MARKET HEADED?

James Downs SCHOTT NEXTERION®, GERMANY

12:45 $2b - SENSORS FOR ONLINE MONITORING OF O_2, PH AND CO_2 IN MICROFLUIDICS$

Daniela Obermaier

PreSens Precision Sensing GmbH, GERMANY

FIESENS FIECISION SENSING CHIDIN, CLINIANT

PLENARY PRESENTATION V

Chair: Emmanuel Delamarche, IBM Research – Zürich, SWITZERLAND

San Francisco Room

13:10 ADDRESSING NEWBORN SURVIVAL GLOBALLY: THE ROLE OF INNOVATIONS IN MOVING FROM POLICY TO ACTION

Zulfigar A. Bhutta^{1,2}

¹Hospital for Sick Children, Toronto, CANADA and

²Aga Khan University, PAKISTAN

13:55 Lab on a Chip and Dolomite – Pioneers in Miniaturization
Lectureship Prize and Presentation
Prize Recipient: Hang Lu, Georgia Institute of Technology, USA

14:15 Speaker Corner (see page 7)

14:15 Poster Session 3 and Exhibit Inspection

Ground Floor and First Floor

Poster presentations are listed by topic category with their assigned number starting on page 40.

14:30 NIST and Lab on a Chip - Art in Science Award (in Royal Society of Chemistry Booth Number 63)

16:15 Break

Your R+D Partner
From Idea to Production

Session 3A3 - Spheroids and Organoids Chair: Olivier Frey, InSphero AG, SWITZERLAND

San Francisco Room

16:45 Keynote Presentation

ORGANOIDS-ON-CHIPS TO ADVANCE HEALTH SCIENCE

Jianhua Qin

Dalian Institute of Chemical Physics, CHINA

17:15 MULTI-STEP IMMUNOSTAINING TOOL FOR SPHEROID ARRAY USING DROPLET CONTACT-BASED SPHEROID TRANSFER

Hwisoo Kim, Hyewon Roh, Chang Hyun Cho, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

17:35 OPTIMIZING CO-CULTURE MEDIUM CONDITION FOR THE INTEGRATION OF KIDNEY ORGANOID AND VASCULAR BED

Ryu Okada¹, Yoshikazu Kameda¹, Kensuke Yabuuchi², Toshikazu Araoka³, Jun K. Yamashita³, Tatsuji Enoki⁴, Minoru Takasato², Kenji Osafune³, and Ryuji Yokokawa¹ ¹*Kyoto University, JAPAN, ²RIKEN, JAPAN, and* ³*Takara Bio Inc., JAPAN*

17:55 BRIDGING THE GAP: A MICROFLUIDIC DEVICE FOR STUDYING ORGANOTYPIC BARRIER TISSUES

Alec E. Richardson¹, Luke A. Schwerdtfeger¹, Diana Eaton², Stuart A. Tobet¹, and Charles S. Henry¹

1 Colorado State University, USA and 2 Applied Medical, USA

Session 3B3 - Manipulation of Cells

Chair: Ashleigh Theberge, University of Washington, USA

Singapore Room

16:45 Keynote Presentation

AUTOMATED MICROFLUIDIC GENETIC MANIPULATION FOR HIGH THROUGHPUT BIOLOGY

Po-Hsun Huang, Sijie Chen, and Cullen R. Buie Massachusetts Institute of Technology, USA

17:15 INTRACELLULAR DELIVERY OF ACTIVE BIOMOLECULES THROUGH VORTEX-INDUCED CELL DEFORMATION

Jeongsoo Hur and Aram J. Chung Korea University. KOREA

17:35 DIELECTROPHORESIS REVEALS THAT BACTERIAL ELECTROPORATION CORRELATES WITH CELL POLARIZABILITY

Qianru Wang^{1,2}, Sijie Chen¹, and Cullen R. Buie¹
¹Stanford University, USA and
²Massachusetts Institute of Technology, USA

17:55 VERSATILE ENGINEERING OF LYSINS: ONE DROP TO KILL

Hans Gerstmans^{1,2,3}, Fabrice Gielen^{4,5}, Lorenz Van Hileghem², Rob Lavigne³, Florian Hollfelder⁴, Jeroen Lammertyn², and Yves Briers¹

¹Ghent University, BELIGIUM, ²KU Leuven, BELGIUM,

³University of Exeter, UK, and ⁴University of Cambridge, UK

Session 3C3 - Nanopores and Nanochannels Chair: Jonas Tegenfeldt, *Lund University, SWEDEN*

Sydney Room

16:45 Keynote Presentation

BIPOLAR ELECTRODES FOR MICROFLUIDIC PUMPING

Alexander Eden, Farnaz Lorestani, Sean MacKenzie, Rena Yang, David Huber, Carl D. Meinhart, and Sumita Pennathur University of California, Santa Barbara, USA

17:15 CONTROLLING DNA FLOW IN NANOCHANNELS USING TOPOGRAPHY

Franziska M. Esmek and Irene Fernandez-Cuesta Hamburg University, GERMANY

17:35 NANOPORE DECODING FOR MICRORNA PATTERN OF CANCER WITH DNA COMPUTATION

Nanami Takeuchi, Moe Hiratani, Asuka Tada, and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN

17:55 SINGLE MOLECULE ELECTRICAL IDENTIFICATION OF EPIGENETIC VARIATIONS BY NANOFLUID INTEGRATED NANOGAP DEVICES

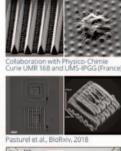
Takahito Ohshiro, Yuuki Komoto, Masamitsu Konno, Jun Koseki, Ayumu Asai, Hideshi Ishii, and Masateru Taniguchi Osaka University, JAPAN

18:15 Adjourn for the Day

Conference Banquet

19:00 - 23:00

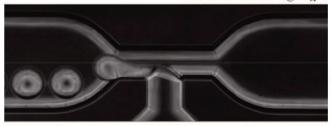
Join us at ZicZac to enjoy "Real Food Good Mood" with live entertainment and network with colleagues. As of the printing of this program, there are a few tickets remaining for purchase. Please visit the Onsite Conference Registration Desk for availability. Please note that transportation will not be provided by the conference. Check with your hotel front desk for directions on how to take Tram number 6 to the Morgartenring stop across from ZicZac using your BaselCard.




MEET US!

YDROGEL STRUCTURATION

PRIMO contactless & maskless photopatterning allows to create custom structured substrates in 3D.


otron

High-speed cameras for MEMS, micro-fluidic and lab-on-a-chip applications

- MPixel resolution @ 2-20kfps
- Sub-microsecond exposure
- High light sensitivity
- Compact and light weight

FASTCAM Mini UX100 @ 10kfps

www.photron.com

europe@photron.com

THURSDAY AT A GLANCE

08:45 - 10:15	SESSION 4A1 Droplet Microfluidics Interfaced with Mass Spectrometry	SESSION 4B1 Wearables	SESSION 4C1 Biofibers Dynamics and Assemblies at the Microscale
	KEYNOTE PRESENTATION Detlev Belder	KEYNOTE PRESENTATION Stéphanie P. Lacour	KEYNOTE PRESENTATION Rikiya Watanabe
10:15 - 10:45	Break: Exhibit and Poster Inspection		
10:45 - 11:45	SESSION 4A2 Analysis of Neutrophils for Diagnosis of Sepsis and Inflammation	SESSION 4B2 Centrifugal Platforms	SESSION 4C2 Gas Control for Cells
11:45 - 11:50	Transition		
11:50 - 12:35	PLENARY PRESENTATION VI Aleksandra Radenovic — École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SWITZERLAND		
12:35 - 12:45	CHEMINAS - Young Researcher Poster Awards		
12:45 - 12:55	Lab on a Chip - Widmer Poster Award		
12:55 - 13:05	IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award		
13:05 - 13:15	Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award		
13:15	Closing Remarks - Conference Adjourns		

THURSDAY, 31 OCTOBER

Session 4A1 – Droplet Microfluidics Interfaced with Mass Spectrometry Chair: Susan Lunte, *University of Kansas, USA*

San Francisco Room

08:45 Keynote Presentation

INTERFACING DROPLET CHIPS TO MASS SPECTROMETRY

Detlev Belder

Leipzig University, GERMANY

09:15 HIGH-THROUGHPUT X-RAY CRYSTALLOGRAPHY BASED ON THE PROTEIN CRYSTAL ARRAY

Reo Takeda¹, Masatoshi Maeki¹², Sho Ito²³, Go Ueno², Kunio Hirata², Akihiko Ishida¹, Hirofumi Tani¹, Masaki Yamamoto², and Manabu Tokeshi¹ ¹Hokkaido University, JAPAN, ²RIKEN, JAPAN, and ³University of Hyogo, JAPAN

09:35 MASSIVE SCREENING OF METABOLITES USING PICOLITER DROPLET ARRAY WITH NANOSTRUCTURE-INITIATOR MASS SPECTROMETRY

Noel S. Ha^{1,2}, Markus de Raad¹, Fangchao Song¹, Kai Deng^{2,4}, Nicole Ing^{2,4}, Anup K. Singh^{2,4}, and Trent R. Northen^{1,2,3}

*Lawrence Berkeley National Laboratory, USA, *US Department of Energy Joint BioEnergy Institute, USA, *3US Department of Energy Joint Genome Institute, USA, and *Sandia National Laboratories, USA

09:55 MULTI-OMIC DIGITAL MICROFLUIDIC APPROACH TO CHARACTERIZATION OF THE NEURAL STEM CELL ENVIRONMENT

Erica Y. Scott, Calvin Chan, Betty Li, Harrison Edwards, Julian Lamanna, Filip Stojic, Cindi Morshead, and Aaron Wheeler *University of Toronto, CANADA*

Session 4B1 - Wearables

Chair: Carlotta Guiducci, École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

Singapore Room

08:45 Keynote Presentation

SKÍN-LIKE, MICROFABRICATED GALLIUM-BASED SENSORS FOR MOTION CAPTURE

Laurent Dejace, Arthur Hirsh, and Stéphanie P. Lacour École Polytechnique Fédérale de Lausanne (EPFL). SWITZERLAND

09:15 ORGANIC TRANSDERMAL IONTOPHORESIS PATCH POWERED BY SERIALIZED LAYER-BUILT BIOFUEL CELLS

Takaya Mizuno, Kaito Sato, Shinya Kusama, Shotaro Yoshida, and Matsuhiko Nishizawa Tohoku University, JAPAN

09:35 METAL WIRING ON FLEXIBLE ORIGAMI STRUCTURE FOR STABLE RESISTANCE VALUE AGAINST DEFORMATION

Takuya Uchida¹, Hir<mark>oki Ya</mark>suga², Eiji I<mark>wase²,</mark> and Hiroaki Onoe¹

**Ikeio University, JAPAN and **Waseda University, JAPAN

09:55 MEDIATOR-FREE WEARABLE ENZYMATIC SENSING TO MITIGATE IONIC AND ELECTROACTIVE INTERFERENCE FOR RELIABLE OPERATION IN COMPLEX BIOFLUID

Bo Wang, Yichao Zhao, Hannaneh Hojaiji, Minsoo Kim, and Sam Emaminejad University of California, Los Angeles, USA

Session 4C1 - Biofibers Dynamics and Assemblies at the Microscale Chair: Tom Robinson, Max Planck Institute of Colloids and Interfaces, GERMANY

Sydney Room

08:45 Keynote Presentation

MICROSYSTEMS FOR SINGLE MOLECULE ANALYSIS OF MEMBRANE PROTEINS

Rikiya Watanabe RIKEN, JAPAN

09:15 INFLUENCE OF TOPOLOGICAL CONSTRAINTS ON DIFFERENTIATION AND ALIGNMENT OF MULTINUCLEATED MYOTUBES

Ki-Young Song^{1,2}, Jorge Correia², Gorge L. Ruas², and Ana I. Teixeira² ¹Beijing Institute of Technology, CHINA and ²Karolinska Institutet, SWEDEN

09:35 ASSEMBLY OF ACTOMYOSIN BUNDLES IN MICROFLUIDIC CHANNEL

Shusei Kawara¹, Yuichi Hiratsuka², and Hiroaki Onoe¹ 1 Keio University, JAPAN and

² Japan Advanced Institute Science Technology (JAIST), JAPAN

09:55 INVESTIGATING FIBROBLAST-INDUCED COLLAGEN

GEL CONTRACTION USING A DYNAMIC MICROSCALE PLATFORM

Tianzi Zhang¹, John H. Day¹, Xiaojing Su¹, Arturo G. Guadarrama², Nathan K. Sandbo², Stephane Esnault², Loren C. Denlinger²,

Erwin Berthier¹, and Ashleigh B. Theberge^{1,3}

¹University of Washington, USA, ²University of Wisconsin, USA, and ³University of Wisconsin School of Medicine and Public Health, USA

10:15 Speaker Corner (see page 7)

10:15 Break: Exhibit and Poster Inspection

Session 4A2 - Analysis of Neutrophils for Diagnosis of Sepsis and Inflammation
Chair: Tohid Didar, McMaster University, CANADA

San Francisco Room

10:45 RAPID MONITORING OF SEPSIS BY INTEGRATION OF SPIRAL INERTIAL MICROFLUIDICS AND ISODIELECTRIC SEPARATION

Do-Hyun Lee¹, Hyungkook Jeon¹, Bakr Jundi², Rebecca M. Baron², Bruce D. Levy², Jongyoon Han¹, and Joel Voldman¹

**Massachusetts Institute of Technology, USA and

²Harvard Medical School, USA

11:05 EARLY SEPSIS DIAGNOSIS BY MEASURING NEUTROPHIL SPONTANEOUS MIGRATION AND

RESIDUAL-PHAGOCYTOSIS USING MICROFLUIDICS

Sinan Muldur¹, Anika Marand¹, Andreu Cullere¹, Jarone Lee², Michael Filbin³, Felix Ellett¹, and Daniel Irimia¹

1 Massachusetts General Hospital, USA,

²Harvard Medical School, USA, and

³Shriners Burns Hospital, USA

11:25 LABEL-FREE IMPEDANCE MAPPING OF NEUTROPHIL DYNAMIC IMMUNE RESPONSES FOR RAPID MULTI-PARAMETRIC INFLAMMATORY PROFILING

Chayakorn Petchakup¹, Sheng Yuan Leong¹, Hui Min Tay¹, Rinkoo Dalan², King Ho Holden Li¹, and Han Wei Hou¹ ¹Nanyang Technological University, SINGAPORE and ²Tan Tock Seng Hospital, SINGAPORE

Session 4B2 - Centrifugal Platforms

Chair: Roland Zengerle, University of Freiburg, GERMANY

Singapore Room

10:45 MINIATURIZED ALL-IN-ONE POWERED LAB ON A DISC PLATFORM

Edwin En-Te Hwu, Marlitt Viehrig, Sriram Thoppe Rajendran, Laura Serioli, Kinga Zór, and Anja Boisen Technical University of Denmark, DENMARK

11:05 AUTOMATING PROTEIN IMMUNOPRECIPITATION IN CENTRIFUGAL MICROFLUIDICS

Daniel Brassard¹, Jamal Daoud¹, Liviu Clime¹, Matthias Geissler¹, Lidija Malic¹, Denis Charlebois², and Teodor Veres¹

1 National Research Council, CANADA and
2 Canadian Space Agency, CANADA

11:25 AUTOMATION AND INTEGRATION OF A CENTRIFUGAL MICRODEVICE FOR DNA PURIFICATION USING DYNAMIC SOLID PHASE EXTRACTION AND NOVEL LASER-ACTUATED VALVING

Leah M. Dignan¹, Kimberly R. Jackson¹, M. Shane Woolf¹, Christopher J. Tomley¹, and James P. Landers^{1,2} ¹University of Virginia, USA and ²MicroLab Inc., USA

Session 4C2 - Gas Control for Cells

Chair: Yi-Chin Toh, National University of Singapore, SINGAPORE

Sydney Room

10:45 INVESTIGATION OF DRUG METABOLISM WITH LIVER ZONATION MODEL USING OXYGEN GRADIENT IN A MICROFLUIDIC DEVICE

Satomi Matsumoto¹, Eric Leclerc², Astia Riziki Safitri¹, Mathieu Danoy³, Toshiro Maekawa¹, Haruyuki Kinoshita¹, Marie Shinohara³, Kikuo Komori³, Yasuyuki Sakai³, and Teruo Fujii¹

1 University of Tokyo, JAPAN and ²LIMMS/CNRS-IIS, JAPAN

11:05 A MICROFLUIDIC OXYGENATOR WITH LARGE GAS EXCHANGE SURFACE

Julie Lachaux¹, Gilgueng Hwang¹, Caterina Casari², Nassim Arouche², Valeria Lotito¹, Alisier Paris¹, Cécile V. Denis², Peter S. Lenting², Georges Uzan², Pierre Molinie³, Olaf Mercier³, and Anne-Marie Haghiri-Gosnet¹ ¹C2N CNRS, FRANCE, ²Institut National de la Santé et de la Recherche Médicale (INSERM), FRANCE, and ³HML, FRANCE

11:25 3D PRINTED DEVICES FOR 96-WELL GAS CONTROL

Adam Szmelter, Jason Jacob, and David T. Eddington University of Illinois, Chicago, USA

11:45 Transition

PLENARY PRESENTATION VI

Chair: Andreas Hierlemann, ETH Zürich, SWITZERLAND

San Francisco Room

11:50 A TALE OF SINGLE PORE IN QUASI 2D MEMBRANES

Michael Graf, Martina Lihter, Michal Macha, Sanjin Marion, and <mark>Aleksandra Radenovic</mark> École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SWITZERLAND

12:35	CHEMINAS - Young Researcher Poster Awards	
12:45	Lab on a Chip - Widmer Poster Award	
12:55	IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award	
13:05	Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award	
13:15	Closing Remarks	
13:20	Speaker Corner (see page 7)	
13:20	Closing Remarks - Conference Adjourns	

Sensors and Actuators Reports

A brand-new gold open access journal covering every aspect of sensors and actuators

- Reputation: building on the established Sensors and Actuators journal family
- Broad: publishing on all types of sensors and actuators
- Speed: rapid publication
- Reach: global authorship and readership
- Open: gold open access provision ensures that your work is freely available to all

Find out more: www.elsevier.com/locate/snr

What ever you need - We have it!

Over 2 Mio. diagnostic & research reagents

- 60 innovative suppliers
- Very competitive prices
- Qualified scientific support

TotalSeq™

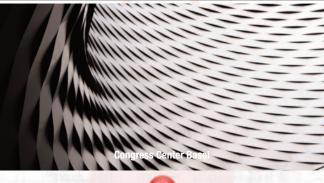
Oligonucleotide-Antibody Conjugates

For high-throughput single cell experiments by combining proteomic and transcriptomic data

Quick-DNA/RNA™ Kits

Ready for high-sensitivity assays down to a single-cell. 6μl elution volume for high concentrations!

Functional Microparticles


Flow Cytometry Particles Polymer Microparticles Fluorescent Particles Coated Particles Magnetic Particles Nanoparticles etc.

lucerna-chem.ch

Your provider in Switzerland

MONDAY 14:00 - 16:30

TUESDAY 14:00 - 16:30

WEDNESDAY 14:15 - 16:45

CLASSIFICATION

- a Cells, Organisms and Organs on a Chip
- b Chemical Applications: Separations, Mixers and Reactions
- c Diagnostics, Drug Testing & Personalized Medicine
- d Fundamentals in Microfluidics and Nanofluidics
- e Micro- and Nanoengineering
- f Sensors and Detection Technologies
- g Other Applications of Microfluidics
- h Late News

See poster floor plan on the last page of this program.

a - Cells, Organisms and Organs on a Chip

Bioinspired, Biomimetic & Biohybrid Devices

M001.a ANTI-FOULING SURFACES FEATURED WITH MAGNETIC ARTIFICIAL CILIA

Shuaizhong Zhang¹, Ye Wang¹, Patrick R. Onck², and Jaap M.J. den Toonder¹ ¹Eindhoven University of Technology, THE NETHERLANDS and ²University of Groningen, THE NETHERLANDS

M002.a BIOMECHANICALLY TUNED LUNG-ON-CHIP: TUNING INTRINSIC STIFFNESS OF THE AIR-LIQUID INTERFACE AND ON-CHIP ORIENTATION OF MEMBRANE STRAIN

Lisa D. Muiznieks, Jessica Ayache, Sasha Cai Lesher-Perez, and Guilhem Velvé Casquillas *Elvesys, FRANCE*

M003.a SENSING OF OXYGEN CONCENTRATION IN A MICROFLUIDIC DEVICE MIMICKING LIVER 3D MICROARCHITECTURE

Manon Boul^{1,2}, Satomi Matsumoto³, Marie Shinohara³, Yasuyuki Sakai³, Teruo Fujii³, Anne Dubart-Kupperschmitt², Eric Leclerc³, and Bruno Le Pioufle¹ ¹ENS Paris Saclay, FRANCE, ²Université Paris-Saclay, FRANCE, and ³Tokyo University, JAPAN

T001.a BIOSENSING AND POWER GENERATION ROBOTS USING ANHYDROBIOYIC CHIRONOMID FOR SPACE EXPRORING

Yo Tanaka¹, Satoshi Amaya¹, Doudou Ma¹, Yigang Shen¹, Oleg Gusev^{2,3}, Takahiro Kikawada⁴, and Yaxiaer Yalikun¹ ¹RIKEN, JAPAN, ²NARO, JAPAN, and ³Kazan Federal University, RUSSIA

TOO2.a MICROFLUIDIC FABRICATION OF BIO-ACTUATORS DRIVEN BY ARTIFICIAL MUSCLES MADE FROM MOLECULAR MOTORS

Yingzhe Wang¹, Yuichi Hiratsuka², Takahiro Nitta³, Kaoru Uesugi¹, and Keisuke Morishima¹

¹Osaka University, JAPAN, ²Japan Advanced Institute of Science and Technology (JAIST), JAPAN, and ³Gifu University, JAPAN

Bioinspired, Biomimetic & Biohybrid Devices

T003.a STEREOLITHOGRAPHY (SLA) 3D PRINTED TEMPLATES FOR ENGINEERING PERFUSABLE BIOMIMETIC VASCULATURES IN ALGINATE HYDROGEL

Terry (Tsz Him) Ching^{1,2}, Toh Yi-Chin², and Michinao Hashimoto¹ Singapore University of Technology and Design, SINGAPORE and ²National University of Singapore, SINGAPORE

W001.a BASOLATERAL COMPARTMENT PRESSURE MEASUREMENT IN THE CULTURE DEVICE WITH FILTRATION FOR THE EVALUATION OF CELL LAYER CONDITION

Kotaro Doi¹, Hiroshi Kimura², Masaomi Nangaku¹, and Teruo Fujii¹ ¹*University of Tokyo, JAPAN and* ²*Tokai University, JAPAN*

W002.a MICROFLUIDICS-ENABLED EXTRUSION OF PROTEIN-BASED TUBULAR BIOMATERIALS AND TISSUES

Wuyang Gao, Nima Vaezzadeh, Kelvin Chow, and Axel Guenther University of Toronto, CANADA

a - Cells, Organisms and Organs on a Chip

Cell Capture, Counting, & Sorting

MOO4.a A HANDHELD MICROFLOW CYTOMETER FOR ENUMERATION OF RESIDUAL WHITE BLOOD CELLS

Byeongyeon Kim, Suyeon Shin, and Sungyoung Choi Kyung Hee University, KOREA

M005.a DIELECTROPHORETIC CANCER-TYPE SORTING CHIP AS ADVANCED LIQUID BIOPSY

Yuto Sasaki, Mio Mizoguchi, Ken Yamamoto, and Masahiro Motosuke *Tokyo University of Science, JAPAN*

M006.a MICROFLUIDIC CHIP FOR T CELL-ANTIGEN PRESENTING CELL INTERACTION CHARACTERIZATION

Margaux Duchamp¹, Marion Arnaud^{2,3}, Clarisse Vaillier¹, Sara Bobisse^{2,3}, George Coukos^{2,3}, Alexandre Harari², and Philippe Renaud¹

- ¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND,
- ²Centre Hospitalier Universitaire Vaudois, SWITZERLAND, and
- ³Université de Lausanne, SWITZERLAND

M007.a PARALLEL ELECROROTATION AND SINGLE CELLS HANDLING IN INDIVIDUAL DIELECTRIC MICROCAGES

Kevin Keim, Mohamed Z. Rashed, and Carlotta Guiducci École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

T004.a AN OPTICAL TWEEZERS INTEGRATED MICROFLUIDIC PLATFORM FOR THE IDENTIFICATION AND RETRIEVAL OF ANTIGEN-SPECIFIC B CELLS

Jolien Breukers, Sara Horta, Nick Geukens, Karen Vanhoorelbeke, and Jeroen Lammertyn KU Leuven, BELGIUM

Cell Capture, Counting, & Sorting

T005.a GROWTH PHENOTYPE BASED REPORTER-FREE SCREENING OF FILAMENTOUS FUNGLIN MICROFLUIDIC DROPLETS

Jing Dai, Huijuan Yan, Jose Wippold, Won-Bo Shim, and Arum Han Texas A&M University, USA

T006.a INERTIAL MICROFLUIDICS-BASED SEPARATION OF MICROALGAE USING A CONTRACTION—EXPANSION ARRAY MICROCHANNEL

Ga-Yeong Kim, Jaejung Son, Jong-In Han, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

T007.a ONE-STEP SEPARATION AND TRAPPING OF SINGLE LEUKOCYTES FROM WHOLE BLOOD IN A MICROFLUIDIC DEVICE

Oriana G. Chavez-Pineda, Diana F. Cedillo-Alcantar, and Jose L. Garcia-Cordero *Unidad Monterrey, MEXICO*

TOO8.a VISCOELASTIC PARTICLE FOCUSING BASED IMAGING FLOW CYTOMETRY: AN APPLICATION TO YEAST CELLS

Sun Ok Hong¹, Bo-Hyun Choi¹, Pyung Cheon Lee¹, Sung Sik Lee², and Ju Min Kim¹ ¹Ajou University, KOREA and ²ETH Zürich, SWITZERLAND

W003.a A FULLY-AUTOMATED MICROFLUIDIC ROBOT FOR CIRCULATING ENDOTHELIAL PROGENITOR CELL SORTING AND ANALYSIS

Yu Wang¹, Dong-Fei Wang², Hui-Feng Wang¹, Bei-Bei Sun¹, Jian-Wei Wang¹, Xiao-Gang Guo², and Qun Fang¹ ¹Zhejiang University, CHINA and ²Zhejiang University School of Medicine, CHINA

WOO4.a CTC ENRICHMENT USING A 3D PRINTED DEVICE COMBINING IMMUNOAFFINITY AND FILTRATION

Chia-Heng Chu, Ruxiu Liu, Tevhide Ozkaya-Ahmadov, and A. Fatih Sarioglu Georgia Institute of Technology, USA

W005.a A CIRCULATING FILTRATION SYSTEM FOR CELL RECOVERY

Tingting Hun¹, Yaoping Liu¹, and Wei Wang^{1,2}

¹Peking University, CHINA and ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

W006.a MICRO-ELECTRO-FLUIDIC-PROBE FOR SEQUENTIAL CELL SORTING AND PATTERNING

Ayoola Brimmo, Anoop Menachery, and Mohammad A. Qasaimeh New York University, USA

W007.a TOWARDS CENTRIFUGATION-ASSISTED CELL TRAPPING AND ISOLATION IN A TWO-PHASE LIQUID

Wilfred Espulgar, Yuga Okui, Masato Saito, Shohei Koyama, Atsushi Kumanogoh, Hyota Takamatsu, and Eiichi Tamiya Osaka University, JAPAN

a - Cells, Organisms and Organs on a Chip

Cell-Culturing & Perfusion (2D & 3D)

MOO8.a A PERFUSABLE 3D IN VITRO ARTERY MODEL INCORPORATING HUMAN VASCULAR SMOOTH MUSCLE CELLS AND ENDOTHELIAL CELLS IN WRINKLED PDMS CHANNELS

Minkyung Cho and Je-Kyun Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

M009.a CELL BEADS TECHNOLOGY USING MICROFLUIDIC DEVICE AS A NEW PLATFORM FOR VASCULARIZED ORGANOID FORMATION

Shogo Nagata and Shoji Takeuchi University of Tokyo, JAPAN

M010.a COMPOSITE PDMS-BASED IN SITU PATTERNING OF COLLAGEN MICROGELS FOR PERFUSION CELL CULTURE MICROSYSTEMS

Misaki Kato, Mayu Fukushi, Masumi Yamada, Rie Utoh, and Minoru Seki

Chiba University, JAPAN

M011.a DEVELOPMENT OF A HYDROGEL-ASSISTED MACRO-PATTERNED PLATFORM FOR MIMICKING THE NATIVE MYOCARDIUM

Tae Hoon Shin, Da Jung Jung, and Gi Seok Jeong Asan Medical Center, KOREA

M012.a FABRICATION OF SPATIALLY-CONTROLLED 3D LIVER TISSUE VIA LAYERING CELL-LADEN COLLAGEN SHEETS

Jaejung Son and Je-Kyun Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

M013.a GENERATION OF HIGH ASPECT-RATIO PDMS MICROFIBERS FOR 3D MYELINATION CULTURE OF SCHWANN CELLS

Hui-Ying Lin^{1,2}, Ing Ming Chiu², Horng-Dar Wang¹, and Chia-Hsien Hsu²

¹National Tsing Hua University, TAIWAN and

²National Health Research Institutes, TAIWAN

M014.a MODULATING THE CELL ADHESION MICROENVIRONMENT TO MECHANICALLY DRIVE TROPHECTODERM-LIKE ORGANOID FORMATION FROM HUMAN IPS CELLS

Kennedy O. Okeyo¹, Osamu Kurosawa², Hidehiro Oana³, and Masao Washizu³

¹Kyoto University, JAPAN, ²RIKEN, JAPAN, and

³University of Tokyo, JAPAN

M015.a PARALLEL FORMATION OF CELL SPHEROIDS BASED ON VIBRATION-INDUCED FLOW

Nanami Minoshima and Takeshi Hayakawa Chuo University, JAPAN

M016.a STUDY OF SYNERGISTIC EFFECT OF PHOTO-CHEMOTHERAPY ON A NEW 3D BREAST CANCER MODEL UNDER MICROFLUIDIC CONDITIONS

Magdalena Flont, Elzbieta Jastrzebska, and Zbigniew Brzozka Warsaw University of Technology, POLAND

Cell-Culturing & Perfusion (2D & 3D)

M017.a TUBING-FREE MICROFLUIDIC PLATFORM FOR CO-CULTURING OF 2D ADHERENT CELLS AND 3D MICROTISSUE SPHEROIDS

Furkan Gökçe, Andreas Hierlemann, and Mario M. Modena ETH Zürich, SWITZERLAND

T009.a ALGINATE TUBE PROVIDES WITH FIBROBLAST GROWTH

ORIENTATION BY THE SUB-MICROSTRUCTURES
GENERATED DURING LIQUID ROPE-COILING
PROCESS APPLIED TO CONSTRUCT
TUBULAR CARDIAC TISSUE

Bo-Heng (Henry) Liu and Fan-Gang Tseng National Tsing Hua University, TAIWAN

T010.a CELL ORIENTATION CONTROL BASED ON GEOMETRY SENSING IN SELF-ORGANIZED CELL SHEET FORMATION UNDER LIMITED ADHESION CONDITION

Yoshikiyo Kibe, Kennedy O. Okeyo, and Taiji Adachi Kyoto University, JAPAN

T011.a CONTROLLING THE FORMATION OF OSTEOBLAST-OSTEOCYTE INTERACTIONS BY MICROPATTERNING TO STUDY BONE CELL MECHANOBIOLOGY

Charlotte Yvanoff¹, Gintare Garbenciute², Vytautas Navikas², Ramunas Valiokas², and Ronnie Willaert¹ 1 Vrije Universiteit Brussel, BELGIUM and

²Center for Physical Sciences and Technology, LITHUANIA

TO12.a EVALUATION OF NEURONAL ACTIVITY IN A NEURON-ASTROCYTE CO-CULTURE SYSTEM USING A MICROPOROUS SIN MEMBRANE

Ayaka Nakama and Takashi Yasuda Kyushu Institute of Technology, JAPAN

TO13.a FAST, INEXPENSIVE, AND BIOCOMPATIBLE FABRICATION PROTOCOL OF 3D ENDOTHELIUM-ON-CHIP USING SOFT THERMOPLASTIC ELASTOMER AND WIRE MOLDS

Nicolas Distasio, Hugo Salmon, Mohammadreza Rasouli, and Maryam Tabrizian McGill University, CANADA

T014.a HANGING DROP ARRAY CHIP FOR SPHEROID CULTURE WITH FINGER-ACTUATED MICROFLUIDIC MEDIUM EXCHANGE

Juhwan Park, Hwisoo Kim, Jieun Han, and Je-Kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

TO15.a MICROFLUIDIC BIOREACTOR ARRAY FOR HIGH-THROUGHPUT SCREENING AND HATCH-LIKE EXTRACTION OF MUTANT LIBRARIES

Janghyun Ju, Juyeol Bae, and Taesung Kim Ulsan National Institute of Science and Technology (UNIST), KOREA

TO16.a SPATIALLY CONFINED ENDOTHELIAL CELL MONOLAYERS CONSISTENTLY ALIGN PERPENDICULAR TO FLOW

Andrew Kuo, Craig A. Simmons, and Edmond W.K. Young University of Toronto, CANADA

Cell-Culturing & Perfusion (2D & 3D)

T017.a STRETCHING MOTION-DRIVEN ECM-BASED PULSATILE FLOW GENERATOR FOR MIMICKING VENOUS BLOOD FLOW IN VIVO

Azusa Shimizu¹, Wei Huang Goh², Shun Itai¹, Michinao Hashimoto², Shigenori Miura³, and Hiroaki Onoe¹

¹Keio University, JAPAN, ²Singapore University of Technology and Design, SINGAPORE, and ³University of Tokyo, JAPAN

TO18.a UNDERSTANDING CELL PROLIFERATION AND MATERIAL-INDUCED CELL DEATH ON MICROFLUIDIC DEVICES MADE OF OFF-STOICHIOMETRIC THIOL-ENES

Kati J. Piironen, Päivi P. Järvinen, Iiro M. Kiiski, and Tiina M. Sikanen University of Helsinki, FINLAND

W008.a A FULLY AUTOMATED BIOREACTOR SYSTEM FOR PRECISE CONTROL OF STEM CELL PROLIFERATION AND DIFFERENTIATION

Ki-Taek Lim

Kangwon National University, KOREA

W009.a AN AIR-DRIVEN MICRODEVICE TO TUNE THE ANISOTROPIC CURVATURE OF CELL ADHESION PLANE TO PURSE THE MECHANOBIOLOGY OF CURVED SURFACE

Tadahiro Yamashita, Ichiro Matsushita, and Ryo Sudo Keio University, JAPAN

W010.a CENTIMETER-SIZED TISSUE WITH PERFUSABLE CHANNELS TOWARD CULTURED STEAK

Yasuaki Ishii, Yusuke Hirata, Yuya Morimoto, Ai Shima, and Shoji Takeuchi *University of Tokyo, JAPAN*

W011.a ELECTRICAL STIMULATION INDUCED MICROALGAE GROWTH AND ASTAXANTHIN PRODUCTION ON A MICROFLUIDIC CHIP

Jaewon Park¹, Ziyi Song¹, Huixue Song¹, Junyi Yao¹, Yoon-e Choi², Hyunsoo Kim³, and Yunhwan Park² ¹ Southern University of Science and Technology, CHINA, ² Korea University, KOREA, and ³ Korea Institute of Machinery and Materials, KOREA

W012.a FABRICATION OF CONTINUOUS MICROPORES IN CELL-ENCAPSULATING HYDROGELS USING DENSELY-PACKED MICROENGINEERED FIBERS

Yoshimasa Minoda, Aruto Hori, Rie Utoh, Masumi Yamada, and Minoru Seki Chiba University, JAPAN

W013.a GENERATION AND CHARACTERIZATION OF CYCLIC OXYGEN GRADIENTS IN MICROFLUIDIC DEVICE FOR CELL CULTURE

Dao-Ming Chang and Yi-Chung Tung Academia Sinica, TAIWAN

Cell-Culturing & Perfusion (2D & 3D)

W014.a JELLY-FILLED DONUTS: PARALLEL HYDROGEL PLUGS WITH ISOLATION VALVES TO STUDY GROWTH EFFECTS OF TRANSIENT ANTIBIOTIC ADMINISTRATION

Darius G. Rackus, Petra Jusková, Lucas Armbrecht, and Petra S. Dittrich ETH Zürich, SWITZERLAND

W015.a NEW MICROSYSTEM INTEGRATED WITH POROUS POLY (ETHYLENE TEREPHTHALATE) (PET) MEMBRANE FOR ANTICANCER DRUG ANALYSIS

Magdalena Flont, Zuzanna Mackiewicz, Elzbieta Jastrzebska, and Zbigniew Brzozka Warsaw University of Technology, POLAND

W016.a RAPID AND SPATIALLY SEPERATED HETEREOGENOUS 3D CELLULAR PATTERNING USING ELECTROHYDRODYNAMICS

Anoop Menachery¹, Abishek Vembadi¹, Pavithra Sukumar¹, Rachid Rezgui¹, and Mohammad A. Qasaimeh^{1,2} ¹New York University, Abu Dhabi, UAE and ²New York University, USA

W017.a SURFACE MODIFICATION OF PDMS MICROFLUIDIC DEVICES FOR STABLE ENDOTHELIAL GROWTH UNDER HIGH SHEAR STRESS

Asma Siddique and Robert W. Stark Technical University Darmstadt, GERMANY

a - Cells, Organisms and Organs on a Chip

Inter-& Intracellular Signaling, Cell Migration

M018.a A SINGLE MOLECULE BARCODE NANOBIOSENSOR FOR DYNAMIC MULTIGENE ANALYSIS IN LIVE CELLS DURING TISSUE MORPHOGENESIS AND WOUND HEALING

Yi Lu and Pak Kin Wong Pennsylvania State University, USA

M019.a IN VITRO-IN SILICO INTERFACE PLATFORM: BRIDGING THE GAP BETWEEN EXPERIMENT AND THEORY BY INFORMATION SYSTEM TO ELUCIDATE CELLULAR BEHAVIOR SYSTEM

Asuka Yamaguchi $^{\rm I}$, Masakazu Akiyama $^{\rm 2}$, Ikuhiko Nakase $^{\rm I}$, and Masaya Hagiwara $^{\rm I,3}$

¹Osaka Prefecture University, JAPAN, ²Meiji University, JAPAN, and ³RIKEN, JAPAN

M020.a MICROFLUIDIC MONITORING OF CELL RESPONSE IN COMPRESSIVE MECHANICAL STRESS

Ranjan Mishra, Nevena Srejic, Frank van Drogen, Reinhard Dechant, Sung Sik Lee, and Matthias Peter ETH Zürich, SWITZERLAND

T019.a DETERMINING MECHANICAL STIMULATION RESPONSES OF PRIMARY CILIA WITH AN INTEGRATED MICROFLUIDICS PLATFORM

Sheng-Han Chu and Nien-Tsu Huang National Taiwan University, TAIWAN

Inter-& Intracellular Signaling, Cell Migration

TO20.a INVESTIGATING THE INTERCELLULAR INTERACTION BETWEEN 3D GUT EPITHELIAL MICROTISSUES AND CIRCULATING MAIT CELLS USING A MICROFLUIDIC TILTING PLATFORM

Oanh T.P. Nguyen¹, Patrick M. Misun¹, Christian Lohasz¹, Ramona Nudischer², Olivier Frey³, Jan Devan⁴, Gennaro De Libero⁴, Andreas Hierlemann¹, and Kasper Renggli¹

¹ETH Zürich, SWITZERLAND, ²Hoffmann-La Roche, SWITZERLAND, ³InSphero AG, SWITZERLAND, and ⁴University of Basel, SWITZERLAND

T021.a OPEN MICROFLUIDIC COCULTURE FACILITATES BIDIRECTIONAL SIGNALING BETWEEN KIDNEY EPITHELIAL AND ENDOTHELIAL CELLS

Tianzi Zhang, Daniel Lih, Ryan J. Nagao, Jun Xue, Erwin Berthier, Jonathan Himmelfarb, Ying Zheng, and Ashleigh B. Theberge *University of Washington, USA*

W018.a A MULTIMODAL TRANSFECTION DEVICE FOR HIGH EFFICIENCY, INTRACELLULAR DELIVERY OF BIOMOLECULES

Mohammad Aghaamoo, Neha Garg, Xuan Li, and Abraham P. Lee University of California, Irvine, USA

W019.a GLIOBLASTOMA MIGRATION ALONG CONSTRAINTS WITH DIFFERENT GEOMETRIES: HOW TO MIMICK BRAIN PARENCHYMA INVASION?

Mehmet C. Tarhan¹, Alexandre Mutel^{2,3}, Laurence Desrues^{2,3,4}, Dominique Collard⁵, and Hélène Castel^{2,3,4}

1/EMN UMR-8520, FRANCE, ²UNIROUEN, INSERM, DC2N, FRANCE, ³LIMMS/CNRS-IIS, JAPAN, ⁴Institute for Research and Innevation in Biomedicine (IRIB), FRANCE, and ⁵Ligue Nationale Contre le Cancer, FRANCE

W020.a MICROFLUIDIC DEVICE FOR ELECTRICAL MEASUREMENT OF GAP JUNCTION MEDIATED INTERCELLULAR COMMUNICATION WITH INTEGRATED CALIBRATION

Joel H. Dungan, Juanita D. Mathews, Michael Levin, and Valencia J. Koomson *Tutts University, USA*

a - Cells, Organisms and Organs on a Chip

Liposomes/Membranes

M021.a AUTOMATED OBSERVATION OF CELL-SIZED LIPOSOME WITH FEEDBACK CONTROL OF THE OUTER ENVIRONMENT

Hironori Sugiyama¹, Toshihisa Osaki^{1,2}, Shoji Takeuchi¹, and Taro Toyota¹

1 University of Tokyo, JAPAN and ² KRISTEC, JAPAN

M022.a EJECTION OF LARGE PARTICULATE MATERIALS FROM GIANT UNILAMELLAR VESICLES

Shota Katsuta, Taiji Okano, and Hiroaki Suzuki Chuo University, JAPAN

Liposomes/Membranes

M023.a RAPID FORMATION OF LIPID BILAYER MEMBRANES IN PARYLENE-C COATED CHIPS BY PSEUDO-PAINTING OF AN AIR BUBBLE FOR THE FUSION AND DETECTION OF OUTER MEMBRANE VESICLES (OMVS)

Tanzir Ahmed¹, Jayesh A. Bafna², Sander van den Driesche¹,

Martin Oellers¹, Roland Hemmler³, Karsten Gall³,

Richard Wagner², Mathias Winterhalter²,

and Michael J. Vellekoop1

¹University of Bremen, GERMANY, ²Jacobs University, GERMANY, and

3 Ionovation GmbH, GERMANY

T022.a DESIGNING PDMS-BASED MICROFLUIDICS FOR THE PRODUCTION OF SURFACTANT-FREE GIANT LIPID VESICLES

Naresh Yandrapalli and Tom Robinson Max Planck Institute, GERMANY

T023.a MICROFLUIDIC TRAPS TO PROBE THE MECHANICS OF BIOMIMETIC VESICLES AND THEIR INTERACTION WITH NANO-OBJECTS

Pierre Joseph¹, Costanza Montis², Chiara Magnani¹,2,3,

Adrien Dutoya¹, Fabien Mesnilgrente¹, Barbara Lonetti³,

Debora Berti², and Marianne Elias¹

¹LAAS-CNRS, FRANCE, ²University of Florence, ITALY, and

³Université de Toulouse, FRANCE

W021.a ASSESSMENT OF THE FACTORS INFLUENCING LIPOSOME SIZE IN DEAN-FORCES BASED μΜΙΧΕRS

Rubén R. López Salazar¹, Ixchel Ocampo², Karl-F. Bergeron³,

Anas Alazzam⁴, Catherine Mounier³, Ion Stiharu⁵,

and Vahé Nerguizian¹

¹École de Technologie Supérieure, CANADA, ²Tecnológico de Monterrey, MEXICO, ³Université du Québec à Montréal, CANADA, ⁴Khalifa University. UAE, and ⁵Concordia University, CANADA

W022.a DEVELOPMENT OF A THREE-DIMENSIONAL MICROMIXER DEVICE FOR PRODUCTION OF VARIOUS LIPID-BASED NUCLEIC ACID NANOCARRIERS

Niko Kimura, Masatoshi Maeki, Yusuke Sato, Kosuke Sasaki, Akihiko Ishida, Hirofumi Tani, Hideyoshi Harashima,

and Manabu Tokeshi

Hokkaido University, JAPAN

W023.a LIVING IN A BUBBLE: ON CHIP MONITORING OF MICROBIAL PRODUCTION IN LIPID VESICLES

Petra Jusková, Yannick R.F. Schmid, Steven Schmitt, Martin Held, and Petra S. Dittrich

ETH Zürich, SWITZERLAND

a - Cells, Organisms and Organs on a Chip

Multi-Organ Arrangements and Body on a Chip

M024.a CUBE IN A CHIP: ONE TOUCH 3D TISSUE INTEGRATION AND REMOVAL SYSTEM FOR BODY ON A CHIP PLATFORM

Masaya Hagiwara^{1,2}

¹RIKEN, JAPAN and ²Oaka Prefecture University, JAPAN

Multi-Organ Arrangements and Body on a Chip

T024.a A LIVER-TUMOR CO-CULTURE SYSTEM TO ASSESS METABOLISM-RELATED DRUG-DRUG INTERACTIONS

Christian Lohasz¹, Flavio Bonanini¹, Kasper Renggli¹, Olivier Frey², and Andreas Hierlemann¹ ¹ETH Zürich, SWITZERLAND and ²InSphero AG, SWITZERLAND

T025.a INTEGRATED GUT-LIVER ON A CHIP FOR MODELLING NON-ALCOHOLIC FATTY LIVER DISEASE *IN VITRO*

Jiandong Yang, Yoshikazu Hirai, Ken-ichiro Kamei, Toshiyuki Tsuchiya, and Osamu Tabata *Kyoto University, JAPAN*

W024.a A MULTI-MODULE MICROFLUIDIC GASTROINTESTINAL TRACT FOR TESTING FOOD AND DRUGS

Pim de Haan^{1,2}, Milou J.C. Santbergen^{2,3}, Meike van der Zande⁴, Hans Bouwmeester³, Michel W.F. Nielen^{3,4}, and Elisabeth Verpoorte¹ ¹*University of Groningen, THE NETHERLANDS,* ²*TI-COAST. THE NETHERLANDS.*

TIT-UUASI, THE INSTITUTION,

W025.a MICROPHYSIOLOGICAL NETWORK AND COCULTURE OF FIVE MICRO ORGANS (CORTICAL AND HIPPOCAMPAL BRAIN, CARDIAC, LIVER, AND TUMOR 3D MICROTISSUES) ON 96WELL FORMAT BASED BODY ON A CHIP

Chaewon Jin, Hongsoo Choi, and Jin-young Kim Daegu Gyeongbuk Institute of Science and Technology (DGIST), KOREA

a - Cells, Organisms and Organs on a Chip

Organisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)

M025.a A MICROFLUIDIC DEVICE TO ENHANCE THE THROUGHPUT OF ELECTROTAXIS SCREENING WITH CAENORHABDITIS ELEGANS MODELS OF PARKINSON'S DISEASE

Khaled Youssef¹, Daphne Archonta¹, Terry Kubiseski¹, Anurag Tandon², and Pouya Rezai¹ ¹ York University, CANADA and ² University of Toronto, CANADA

M026.a HIGH-THROUGHPUT MECHANICAL PHENOTYPING OF C. elegans Diabetes models using elastomeric micropillar arrays

Samuel Sofela^{1,2}, Sarah Sahloul¹, Christopher Stubbs², Ajymurat Orozaliev¹, and Yong-Ak Song^{1,2}

¹New York University, USA and ²New York University, Abu Dhabi, UAE

M027.a MULTI-PHENOTYPIC MOVEMENT AND CARDIAC SCREENING OF ZEBRAFISH LARVAE USING BIDIRECTIONAL IMAGING IN A MICROFLUIDIC DEVICE

Arezoo Khalili, Ellen Van Wijngaarden, Georg Zoidl, and Pouya Rezai York University, CANADA

TO26.a A MICROFLUIDIC SYSTEM FOR NEMATODE IMMOBILIZATION AND BACTERIAL COLONIZATION STUDIES IN C. elegans

Vittorio Viri, Maël Arveiler, Thomas Lehnert, and Martin A.M. Gijs École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

³ Wageningen University, THE NETHERLANDS, and ⁴ Wageningen Food Safety Research, THE NETHERLANDS

Organisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)

T027.a MICROFLUIDIC ARRAY FOR LARGE SCALE SMFISH TRANSCRIPTIONAL ANALYSIS OF CAENORHABDITIS ELEGANS EMBRYOS

Seleipiri Charles, Guillaume Aubry, Han-Ting Chou, Annalise B. Paaby, and Hang Lu

Georgia Institute of Technology, USA

TO28.a ON-DEMAND ELECTRIC FIELD INDUCED EGG LAYING OF CAENORHABDITIS ELEGANS

Khaled Youssef¹, Daphne Archonta¹, Terry Kubiseski¹,

Anurag Tandon², and Pouya Rezai¹

¹ York University, CANADA and ² University of Toronto, CANADA

W026.a A MICROFLUIDIC-BASED PIPELINE TO INVESTIGATE IN-SITU GENE EXPRESSION IN WHOLE ORGANISMS WITH CELLULAR AND INTER-INDIVIDUAL RESOLUTION

Jason Wan¹, Gongchen Sun², and Hang Lu²

1 Georgia Institute of Technology, USA and 2 Emory University, USA

W027.a MICROFLUIDIC-BASED ANESTHETIC-FREE MICROINJECTION OF INTACT DROSOPHILA LARVA TO INVESTIGATE THE EFFECT OF SEROTONIN ON HEARTRATE

Alireza Zabihihesari, Arthur J. Hilliker, and Pouya Rezai York University, CANADA

W028.a RAPID ASSEMBLY OF CAENORHABDITIS ELEGANS ARRAY ON AN OPEN SURFACE BY CONTACT LINE COMBING FOR IMAGE-BASED SCREENING

Gongchen Sun, Ga Hyun Lee, Guillaume Aubry, and Hang Lu Georgia Institute of Technology, USA

a - Cells, Organisms and Organs on a Chip

Organs on Chip

M028.a 3D DYNAMIC MICROVASCULATURE-ON-CHIP: CYCLIC STRETCH AND VASCULAR REMODELING

Soheila Zeinali¹, Merve Bulut¹, Emily K. Thompson¹,

Thomas Geiser^{1,2}, and Olivier T. Guenat^{1,2}

¹University of Bern, SWITZERLAND and

²University Hospital of Bern, SWITZERLAND

M029.a 3D MICROENGINEERED VASCULARIZED TUMOR SPHEROID FOR DRUG DELIVERY AND EFFICACY TESTING

Jungseub Lee, Jun<mark>gho A</mark>hn, and Noo <mark>Li Je</mark>on Seoul National University, KOREA

M030.a A GLOMERULUS-ON-A-CHIP UTILIZING HIPSC-DERIVED PODOCYTES WITH 3D GLOMERULAR STRUCTURE

Yang Liu¹, Ramin Banan Sadeghian¹, Yoshiki Sahara²,

Junichi Taniguchi², Kensuke Yabuuchi²,

Toshikazu Araoka³, Kenji Osafune³,

Minoru Takasato2, and Ryuji Yokokawa1

1 Kyoto University, JAPAN, 2 RIKEN, JAPAN, and

³Center for iPS Cell Research and Application, JAPAN

Organs on Chip

M031.a CARTILAGE-ON-CHIP: A PHYSIOLOGICALLY INSPIRED PLATFORM TO REPRODUCE ARTICULAR JOINT COMPRESSION AND SHEAR STRAIN

Carlo Alberto Paggi, Bastien Venzac, Jeroen Leijten, Liliana Moreira-Teixeira Leijten, Marcel Karperien, and Séverine Le Gac University of Twente, THE NETHERLANDS

M032.a EFFICIENT FABRICATION OF A PRE-INVASIVE BREAST CANCER MODEL VIA DOUBLE EMULSIFICATION OF MATRIGEL

Jelle J.F. Sleeboom¹, Cecilia M. Sahlgren^{1,2}, and Jaap M.J. den Toonder¹

¹Eindhoven University of Technology, THE NETHERLANDS and ²Åbo Akademi University, FINLAND

M033.a HIGH-THROUGHPUT MICROFLUIDIC PLATFORM FOR VASCULARIZATION OF 3D TISSUES: THE MISSING LINK IN TISSUE CULTURE

Arnaud Nicolas^{1,2}, Sara Previdi^{1,3}, Dorota Kurek¹, Frederik Schavemaker¹, Sebastiaan Trietsch¹, Henriette Lanz¹, and Paul Vulto¹ ¹Mimetas B.V., THE NETHERLANDS, ²LACDR, THE NETHERLANDS and ³LUMC, THE NETHERLANDS

M034.a MICROFLUIDIC MODEL OF THE BLOOD-RETINAL-BARRIER FOR PERMEABILITY TESTS

Jaewon Park¹, Sihan Liu^{1,2}, Yau Kei Chan², and Ho Cheung Shum²
¹Southern University of Science and Technology, CHINA and
²University of Hong Kong, CHINA

M035.a NEW GENERATION OF AIR-BLOOD BARRIER MODEL: A LUNG-ON-CHIP WITH A STRETCHABLE BIOLOGICAL MEMBRANE

Pauline Zamprogno¹, Simon Wuethrich¹, Sven Achenbach¹, Janick D. Stucki¹, Nina Hobi¹, Nicole Schneider-Daum², Claus-Michael Lehr², Hanno Huwer³, Ralph A. Schmid⁴, and Olivier T. Guenat^{1,4}

¹ University of Bern, SWITZERLAND, ²Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), GERMANY, ³ Völklingen Heart Center, GERMANY, and

⁴ University Hospital of Bern, SWITZERLAND

M036.a RESPONSE OF TUBULAR CELLS BY EXPOSING CONTROLLED SHEAR STRESS TO PRIMARY CILIA AFTER OXIDATIVE STRESS

Masatomo Chikamori¹, Hiroshi Kimura², Soo Hyeon Kim¹, Masaomi Nangaku³, and Teruo Fujii¹ ¹Institute of Industrial Science, JAPAN, ²Tokai University, JAPAN, and ³University of Tokyo, JAPAN

M037.a TOWARD A BLOOD-BRAIN BARRIER MICROPHYSIOLOGICAL SYSTEM WITH IN-LINE MONITORING

Ashlyn T. Young¹, Vladimir A. Pozdin², and Michael Daniele^{1,2}

¹North Carolina State University, USA and

²University of North Carolina, Chapel Hill, USA

Organs on Chip

TO29.a 3D IN VITRO HIGH THROUGHPUT SCREENING MODEL FOR ANALYSIS OF COLORECTAL CANCER ORGANOID BY RADIOTHERAPY AND CHEMOTHERAPY FOR PRECISION MEDICINE

Dong-Hee Choi, Yong Hun Jung, Seung-Chul Shin, Ji Hun Yang, and Seok Chung Korea University, KOREA

T030.a ASSESSING BARRIER PROPERTIES USING IMPEDANCE SPECTROSCOPY IN A SEMI-CIRCULAR, BLOOD-BRAIN BARRIER ON-CHIP

Fotios Avgidis, Martijn Tibbe, Anne Leferink, and Loes Segerink University of Twente, THE NETHERLANDS

TO31.a A CELL SHEET-BASED APPROACH FOR RECONSTITUTING IN VITRO BLOOD-BRAIN BARRIER MODEL PERMITING DIRECT PHYSICAL INTERACTION BETWEEN ENDOTHELIAL CELLS AND NEURAL CELLS

Kennedy O. Okeyo, Saki Kouno, and Taiji Adachi Kyoto University, JAPAN

T032.a CELLS NEVER DRY: MOTILE MICROORGANISMS IN A MICROBIOSPHERE REALIZED WITH A HIGH-SPEED DROP BY DROP CONTROL

Hironobu Maeda and Tomohiro Kawahara Kyushu Institute of Technology, JAPAN

T033.a ENGINEERED CORTICAL ORGANOIDS TO MODEL VALPROIC ACID EXPOSURE

Kangli Cui, Yaqing Wang, Yujuam Zhu, Yaqong Guo, Fangchao Yin, and Jianhua Qin Dalian Insititute of Chemistry Physics, CHINA

T034.a LIVING SKIN-SECTION ON A CHIP

Minghao Nie and Shoji Takeuchi University of Tokyo, JAPAN

T035.a MULTIPLEXED ORGAN-ON-CHIP DEVICE FOR INCREASED THROUGHPUT ANALYSIS OF THE TISSUE BARRIER FUNCTION

Mariia Zakharova, Marinke van der Helm, Marciano Palma do Carmo, Hai Le-The, Martijn Tibbe, Andries van der Meer, Kerensa Broersen, Jan Eijkel, and Loes Segerink University of Twente, THE NETHERLANDS

T036.a PUMP-FREE MICROFLUIDIC SYSTEM FOR CELL CULTURE UNDER FLOW

Mohammad Paknahad^{1,2}, Morvarid F. Ghahremani^{1,2}, Caleb Horst³, and Craig Simmons^{1,2} ¹ Ted Rogers Centre for Heart Research, CANADA, ² University of Toronto, CANADA, and

³ CellScale Biomaterials Testing, CANADA

Organs on Chip

T037.a THE ORGANOTEER: A SENSITIVE TEER MEASUREMENT PLATFORM FOR HIGH THROUGHPUT SCREENING OF ORGANS-ON-CHIPS

Arnaud Nicolas^{1,2}, Frederik Schavemaker¹, Sebastiaan J. Trietsch¹, Henriette Lanz¹, Thomas Hankemeier², and Paul Vulto¹

**Immetas B.V., THE NETHERLANDS and

²Leiden University, THE NETHERLANDS

T038.a TRICULTURE-BASED *IN VITRO* SYSTEM OF HUMAN BLOOD-BRAIN BARRIER WITH HIGH *IN VIVO* RELEVANCE AND ITS APPLICATION AS A DISEASE MODEL FOR DRUG SCREENING

Suyeong Seo^{1,2}, Hyewhon Rhim^{1,3}, Kangwon Lee², Nakwon Choi^{1,3}, and Hong-Nam Kim^{1,3} ¹ Korea Institute of Science and Technology (KIST), KOREA, ² Seoul National University, KOREA, and ³ Korea University of Science and Technology (KUST), KOREA

W029.a 3D LIVER TISSUE ENHANCED WITH PERFUSABLE VASCULAR CHANNEL AND SINUSOID-LIKE STRUCTURES

Nobuhito Mori, Yuzo Takayama, and Yasuyuki S. Kida National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W030.a A BIOMIMETIC BILAYER HUMAN PROXIMAL TUBULE-ON-A-CHIP TO ASSES PROXIMAL TUBULE CELLS HARVESTED FROM HPSC-DERIVED KIDNEY ORGANOIDS AS A SUBSTITUTE FOR THE IMMORTALIZED CELL COUNTERPART

Ramin Banan Sadeghian¹, Yang Liu¹, Ryohei Ueno¹, Toshikazu Araoka², Jun Yamashita², Tatsuji Enoki³, Minoru Takasato⁴, and Ryuji Yokokawa¹ ¹ Kyoto University, JAPAN, ² Center for iPS Cell Research and Application, JAPAN, ³ Takara Bio, JAPAN, and ⁴ RIKEN, JAPAN

W031.a A MICROFLUIDIC FLOW CELL FOR MAINTENANCE AND ANALYSIS OF HUMAN SKIN SAMPLES

Kamil Talar¹, Alexander Iles¹, Matthew Hardman², and Nicole Pamme¹ ¹University of Hull, UK and ²Hull York Medical School, UK

W032.a EFFECTS OF BONE MARROW-DERIVED OP9 STROMAL CELLS STIMULATED IN A CELL STRETCHING DEVICE ON HEMATOPOIETIC DIFFERENTIATION

Momoko Maeda¹, Eriko Kamata¹, Kenji Kitajima², Takahiko Hara², and Kae Sato¹

¹ Japan Women's University, JAPAN and

² Tokyo Metroplitan Institute of Medical Science, JAPAN

W033.a ENGINEERING A NOVEL MICROPHYSIOLOGICAL SYSTEM TO RECAPITULATE BIOLOGIC BARRIER FUNCTIONS

Matthew Ishahak¹, Quratulain Amin¹, Jordan Hill¹, Adiel Hernandez¹, Laura Wubker¹, Siddarth Rawal¹, Alessia Fornoni², and Ashutosh Agarwal¹ ¹University of Miami, USA and ²University of Miami Miller School of Medicine, USA

Organs on Chip

W034.a ENGINEERING A 3D NEURAL CIRCUIT, BLOOD-BRAIN BARRIER, AND MYELINATION ON A MICROFLUIDIC 96 WELL PLATE

Seung-Ryeol Lee, Sujin Hyung, Seokyoung Bang, and Noo Li Jeon Seoul National University, KOREA

W035.a MUSCLE ON CHIP WITH A MECHANICALLY TUNABLE 3D MICROENVIRONMENT

Chak Ming Leung, Hsih Yin Tan, Louis Jun Ye Ong, and Yi-Chin Toh National University of Singapore, SINGAPORE

W036.a REAL-TIME MONITORING OF OXYGEN CONSUMPTION IN PRECISION-CUT LIVER SLICES

Maciej Grajewski, Ruby E.H. Karsten, and Elisabeth Verpoorte University of Groningen, THE NETHERLANDS

W037.a SEGREGATED TEER MEASUREMENT ON A DOUBLE TUBULAR RECAPITULATION OF THE BLOOD/KIDNEY BARRIER

Todd P Burton, Kelly Klaassen, Arnaud Nicholas, Linda Gijzen, Marianne Vormann, Bob Ronden, Karel Domansky, Sebastiaan Trietsch, and Paul Vulto *Mimetas, THE NETHERLANDS*

a - Cells, Organisms and Organs on a Chip

Single-Cell Analysis

M038.a ASYMMETRICAL CONSTRICTION CHANNEL BASED MICROFLUIDIC IMPEDANCE FLOW CYTOMETRY ENABLING THE QUANTIFICATION OF SPECIFIC MEMBRANE CAPACITANCE, CYTOPLASM CONDUCTIVITY AND CELLULAR DIAMETER FROM 100.000 SINGLE CELLS

Yi Zhang $^{1,2},$ Hongyan Liang $^{1,2},$ Deyong Chen $^{1,2},$ Junbo Wang $^{1,2},$ Ying Xu 3, and Jian Chen 1,2

¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA, and ³Shanghai Jiao-Tong University School of Medicine, CHINA

M039.a CO-CAPTURE OF MAGNETIC BEADS AND CELLS FOR SINGLE-CELL ANALYSIS IN MICROFLUIDIC CHAMBERS

Lucas Armbrecht, Claudius Dietsche, Rafael S. Müller, Jonas Nikoloff, and Petra S. Dittrich *ETH Zürich, SWITZERLAND*

M040.a DROPLET-ENHANCED ON-CELL ENCODING OF SINGLE CELL SECRETORY FUNCTION

Robert Dimatteo and Dino Di Carlo University of California, Los Angeles, USA

M041.a HIGH-THROUGHPUT FORMATION OF CELL-MICROBEAD PAIRS FOR SINGLE CELL CYTOKINE SECRETION ANALYSIS

Diana F. Cedillo-Alcantar, Roberto Rodriguez-Moncayo, Alberto M. Solis-Serrano, and Jose L. Garcia-Cordero Centro de Investigación y de Estudios Avanzados del IPN, MEXICO

Single-Cell Analysis

M042.a LINKING PHYSICAL PHENOTYPE TO DRUG RESISTANCE: SINGLE-CELL MECHANICAL MEASUREMENTS OF ACUTE PROMYELOCYTIC LEUKEMIA

Brian L. Li, Annie M. Maslan, Aaron M. Streets, and Lydia L. Sohn *University of California, Berkeley, USA*

M043.a MICROFLUIDIC SYSTEM FOR CULTIVATION AND MONITORING OF INDIVIDUAL RIBOFLAVIN OVERPRODUCING ESCHERICHIA COLI CELLS

Petra Juskova, Lucas Armbrecht, Steven Schmitt, Martin Held, and Petra S. Dittrich

ETH Zürich. SWITZERLAND

MO44.a ON-LINE IMPEDIMETRIC MONITORING OF SINGLE CELL ELECTRICAL LYSIS IN A MICROFLUIDIC DEVICE

Sertan Sukas^{1,2}, Albert van den Berg¹, Leon Terstappen¹, and Séverine Le Gac¹

1 University of Twente, THE NETHERLANDS and

2 Vrije Universiteit Brussel, BELGIUM

M045.a SINGLE CELL FLUOROMETRIC GRANZYME B PROFILING OF IMMUNOLOGICAL CELLS AS EARLY IMMUNOTHERAPY RESPONSE PREDICTOR

Jonathan Briones, Wilfred Espulgar, Hiroyuki Yoshikawa, Masato Saito, Shohei Koyama, Atsushi Kumanogoh, Hyouta Takamatsu, and Eiichi Tamiya Osaka University, JAPAN

M046.a SINGLE-CELL DETECTION OF CYTOKINES USING A SIMPLE NANOWELL CHIP INTEGRATED WITH ENCODED MICROARRAY

Mohammed Abdullah and Jun Wang Stony Brook University, USA

T039.a ADHERED CELL DROP-SCREEN: ULTRAHIGH THROUGHPUT QUANTITATIVE MORPHOLOGICAL PROFILING OF ADHERED SINGLE CELLS IN RESPONSE TO MECHANICAL CUES

Ming Wang, Hwa Liang Leo, Chwee Teck Lim, and Chia-Hung Chen National University of Singapore, SINGAPORE

TO40.a DROPLET BASED MICROFLUIDIC FLOW CYTOMETRY CAPABLE OF QUANTIFYING COPY NUMBERS OF SPECIFIC SINGLE-CELL PROTEINS

Yuanchen Wei, Beiyuan Fan, Lixing Liu, Hongyu Yang, Deyong Chen, Junbo Wan, and Jian Chen Chinese Academy of Sciences, CHINA

TO41.a IN VITRO SINGLE-CELL VISUALLIZATION AND PROFILING OF T CELL-ANTIGEN PRESENTING CELL (APC) INTERACTION

Hiroki Ide, Wilfred Villariza Espulgar, Masato Saito, Taiki Aoshi, and Eiichi Tamiya Osaka University, JAPAN

Single-Cell Analysis

T042.a MICHAELIS-MENTEN CYTOMETRY FOR THE EVALUATION OF CHRONIC MYELOGENOUS LEUKEMIA (CML) AT SINGLE-CELL RESOLUTION

Jinzhu Yu, Botond Antal, Ki Oh, Sitapriya Moorthi, Ling Li, Chiara Luberto, Helmut Strey, Phenix-Lan Quan, and Eric Brouzes Stony Brook University, USA

T043.a MICROVASCULAR *IN VITRO* CONSTRICTION MODEL FOR IMAGING CANCER CELL DAMAGE AND RECOVERY

Kyohei Terao¹, Hamizah Cognart², Jean-Louis Viovy², and Catherine Villard²

¹ Kaoawa University. JAPAN. and ² Institut Curie. FRANCE

T044.a REVEALING MICRORNA NEUCLEO-CYTOPLASMIC HETEROGENEITY VIA NANO-PLASMONIC SINGLE-CELL DROPLET SCREENING

Ri Lu^{1,2}, Jia Liu¹, Guoyun Sun¹, Shih-Chung Wei², Song Guo¹, and Chia-Hung Chen^{1,2} ¹ National University of Singapore, SINGAPORE and

²iHealthtech, SINGAPORE

T045.a SINGLE TO COUNTABE-MOLECULE ELISA BY DEVELOPING NANOFLUIDIC DEVICE

Ryoichi Ohta, Kazuma Mawatari, Emi Mori, and Takehiko Kitamori University of Tokyo, JAPAN

TO46.a USING ELECTRICAL IMPEDANCE SPECTROSCOPY TO MONITOR THE DISSECTION EVENTS OF SINGLE BUDDING YEAST CELLS IN A MICROFLUIDIC DEVICE

Yangye Geng¹, Haoxi Wang¹, Yingying Wang¹, Shuiping Ouyang², Zixin Wang³, Dejing Pan⁴, and Zhen Zhu¹

1 Southeast University, CHINA, 2Nanjing Forestry University, CHINA, 3Sun Yat-Sen University, CHINA, and 4Soochow University, CHINA

W038.a A LIQUID BIOPSY APPROACH TO EARLY DETECTION OF BONE MARROW FIBROSIS VIA SINGLE-CELL FUNCTIONAL PROTEOMICS

Dongjoo Kim^{1,2}, Jonathan Chen¹, Zhuo Chen^{1,2}, Maria Kleppe³, Ross L. Levine³, and Rong Fan^{1,2} ¹ Yale University, USA, ² Yale Cancer Center and Yale Stem Cell Center, USA, and ³ Memorial Sloan Kettering Cancer Center, USA

W039.a CELLULAR KINEMATIC ANALYSIS OF IMMOBILIZED SINGLE BUDDING YEAST CELLS IN CONTROLLED HYDRODYNAMIC MICROENVIRONMENT

Yingying Wang¹, Xingyu Xu¹, Shuiping Ouyang², Qing-an Huang¹, and Zhen Zhu¹ ¹Southeast University, CHINA and ²Nanjing Forestry University, CHINA

Single-Cell Analysis

W040.a COMPARTMENTALIZED HYDROGEL MICROPARTICLE BASED DROP-SCREEN FOR MULTIMODAL SINGLE-CELL ASSAY

Myat Noe Hsu 1 , Ri Lu 2 , Shi-Chung Wei 3 , Weikang Nicholas Lin 3 , and Chia-Hung Chen 2

¹Singapore-MIT Alliance for Research and Technology, SINGAPORE and ²National University of Singapore, SINGAPORE

W041.a HIGH-THROUGHPUT SINGLE-CELL IMPEDANCE CYTOMETRY OF PANCREATIC TUMOR XENOGRAFTS TO STRATIFY TUMORIGINICITY

Nathan Swami, John McGrath, Carlos Honrado, Sara Adair, and Todd Bauer University of Virginia, USA

W042.a INDROP RAID: SINGLE CELL TRANSCRIPTOMICS COMBINED WITH INTRACELLULAR (PHOSPHO)PROTEINS QUANTIFICATION

Francesca Rivello¹, Erik van Buijtenen^{1,2}, Kinga Matula², Klaas Mulder¹, and Wilhelm T.S. Huck¹ ¹Radboud University, THE NETHERLANDS and ²Aduro Biotech Europe, THE NETHERLANDS

W043.a MAGNETIC RATCHETING OF HYDROGEL DROPS FOR SELECTION OF HIGH MAGNETIC BIOMASS PRODUCTION BACTERIA

Hiromi Miwa¹, Hayley McCausland², Coleman Murray¹, Arash Komeili², and Dino Di Carlo¹ ¹University of California, Los Angeles, USA and ²University of California, Berkeley, USA

W044.a MICROSTREAMING FLOW ARISING FROM CELLS EXCITED BY SURFACE ACOUSTIC WAVES

Alinaghi Salari^{1,2}, Appak-Baskoy^{1,2}, Michael Kolios^{1,2}, and Scott Tsai^{1,2}

¹Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and ²Ryerson University, CANADA

W045.a NANO-FOCUSED ELECTRIC FIELD FOR NANO-LOCALIZED SIGLE CELL ELECTROPORATION USING ITO NANO-ELECTRODE CHIP

Tuhin S. Santra¹, Srabani Kar^{1,2}, and Fan-Gang Tseng³

¹ Indian Institute of Technology (IITM), INDIA, ² University of Cambridge, UK, and ³ National Tsing Hua University, TAIWAN

W046.a SINGLE-CELL MICROFLUIDIC PLATFORM TO STUDY ANAEROBIC BACTERIA

Yanqing Song¹, Andrew Glidle¹, Christopher Quince², Gavin Collins³, William Sloan¹, and Huabing Yin¹ ¹University of Glasgow, UK, ²University of Warwick, UK, and ³National University of Ireland, IRELAND

a - Cells, Organisms and Organs on a Chip

Synthetic Biology

M047.a A MULTIPLEXED CELL-FREE ASSAY IN DOUBLE EMULSION DROPLETS

Nicola Nuti, Philipp Rottmann, Ariane Stucki, Sven Krähenbühl, and Petra S. Dittrich ETH Zürich, SWITZERLAND

M048.a SELF-ASSEMBLED MONOLAYER ON CYTOP SURFACE ALLOWS ENCAPSULATION OF DYNAMIC PROTEIN SYSTEMS IN PATTERNED CHAMBERS

Hiromune Eto¹, Naoki Soga², Henri G. Franquelim¹, Alena Khmelinskaia^{1,3}, Lei Kai^{1,4}, Michael Heymann¹, Hiroyuki Noji², and Petra Schwille¹

¹ Max Planck Institute, GERMANY, ² University of Tokyo, JAPAN, ³ University of Washington, USA, and ⁴ Jiangsu Normal University, CHINA

T047.a HIGH-THROUGHPUT ERROR-FREE DNA PURIFICATION THROUGH MICRO-PILLAR CHIP AND LASER RETRIEVAL SYSTEM

Huiran Yeom, Namphil Kim, Seo Woo Song, Sumin Lee, and Sunghoon Kwon Seoul National University, KOREA

W047.a A MICROFLUIDIC SYSTEM TO VALIDATE A NEW KINETIC FRAMEWORK FOR WHOLE-CELL ELECTROCATALYSIS IN MICROFLOW REACTORS

Mir Pouyan Zarabadi, Manon Couture, Steve J. Charette, and Jesse Greener *Laval University, CANADA*

W048.a QUORUM SENSING LIPOSOMES: LIPOSOME-BASED ARTIFICIAL CELLS THAT SENSE THEIR POPULATION DENSITY

Taishi Tonooka¹, Lev Tsimring², and Jeff Hasty²
¹Kyoto Institute of Technology, JAPAN and
²University of California, San Diego, USA

a - Cells, Organisms and Organs on a Chip

Vascularization

M049.a ENHANCE CELL CONFLUENCE USING GRADUALLY-DEGRADED ALGINATE-COLLAGEN MATERIAL FOR TUNICA INTERMEDIA FORMATION

Seok Oh¹, Van Thuy Duong¹, Huu Lam Phan¹, HyeWon Son¹, Trung Nguyen¹, Hang Phuong Nguyen¹, Thi Huong Le¹, Suwon Lee¹, HyoSeok Lee¹, Chang Ho Hwang², and Kyo-in Koo¹

¹University of Ulsan, KOREA and ²University of Ulsan College of Medicine, KOREA

Vascularization

TO48.a "ON-CHIP VASCULAR BED" ENABLES INTEGRATION OF A SPHEROID AND PERFUSABLE VASCULATURE

Yoshikazu Kameda¹, Ryu Okada¹, Kensuke Yabuuchi², Toshikazu Araoka¹, Jun K. Yamashita¹, Tatsuji Enoki³, Minoru Takasato², and Ryuji Yokokawa¹ ¹ Kyoto University, JAPAN, ² RIKEN, JAPAN, and ³ Takara Bio Inc., JAPAN

T049.a OVER-FIVE-MILLIMETER DIAMETER ALGINATE-COLLAGEN ENDOTHELIALIZED TUBULAR SCAFFOLD FORMATION

Van Thuy Duong¹, Seok Oh¹, Huu Lam Phan¹, HyeWon Son¹, Trung Nguyen¹, Hang Phuong Nguyen¹, Thi Huong Le¹, Suwon Lee¹, HyoSeok Lee¹, Chang Ho Hwang², and Kyo-in Koo¹

¹ University of Ulsan, KOREA and ² University of Ulsan College of Medicine. KOREA

W049.a DEVELOPMENT OF A MICROFLUIDIC DEVICE CAPABLE OF GENERATING OXYGEN GRADIENTS FOR THREE-DIMENSIONAL CELL CULTURE IN HYDROGEL

Heng-Hua Hsu^{1,2}, Ping-Liang Ko¹, Hsiao-Mei Wu¹, Tse Ang Lee¹, Hsi Chieh Lin¹, and Yi Chung Tung¹ ¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

a - Cells, Organisms and Organs on a Chip

Other Applications in Biology

M050.a CULTIVATION OF 'UNCULTIVABLE' MARINE SEDIMENT BACTERIA USING A MICROBIAL DOMESTICATION POD (MD Pod)

Tartela Alkayyali, Emily Pope, Bradley Haltli, Russell G. Kerr, and Ali Ahmadi

University of Prince Edward Island, CANADA

M051.a ON-CHIP DEFORMABILITY MEASUREMENT OF EUKARYOTIC CELLS: COMPARISON TO ANUCLEATE CELLS

Hiroaki Ito¹, Kohei Fujimoto², and Makoto Kaneko³

1 Chiba University, JAPAN, ² Osaka Univeristy, JAPAN, and
3 Meiio University, JAPAN

T050.a GLASS MICROFLUIDIC HIGH THROUGHPUT HYPOXIA SCREENING SYSTEM FOR OXIDATIVE STRESS ON OCULAR SURFACE CELLS

Jeongyun Kim², Chiwan Koo¹, Won Choi³, Eunjin Lee³, Kyongjin Cho², Jongil Ju², and Jiyeon Choi⁴ ¹Dankook University, KOREA, ²Hanbat National University, KOREA, ³Seoul National University, KOREA, and ⁴Korea Institute of Machinery and Materials (KIMM), KOREA

W050.a A HIGH THROUGHPUT SCREENING PLATFORM TO REJUVENATE SKELETAL MUSCLE FUNCTION VIA ELECTRICAL STIMULATION

Min Young Kim 1 , Hyun Young Shin 1 , Seung Joon Lee 1 , and Minseok S. Kim 1,2

¹Daegu Gyeongbuk Institute of Science and Technolog (DIGIST), KOREA and ²Transitional Responsive Medicine Center (TRMC), KOREA

Other Applications in Biology

W051.a MICROFLUIDIC INVESTIGATION OF RED BLOOD CELL PHASE SEPARATION IN COMPLEX MICROCHANNEL NETWORKS

Alberto Mantegazza, Francesco Clavica, and Dominik Obrist University of Bern, SWITZERLAND

b - Chemical Applications: Separations, Mixers and Reactions

Chemical & Particle Synthesis

M052.b ESTABLISHMENT OF LABO-IN-A-MICRODROPLET FOR AZO COMPOUND SYNTHESIS

Daiki Tanaka¹, Shunsuke Sawai¹, Takuo Sugaya¹, Yoshito Nozaki¹, Dong Hyun Yoon¹, Taisuke Isano³, Hitoshi Yamagata³, Hiroyuki Fujita³, Tetsushi Sekiguchi¹, Takashiro Akitsu², and Shuichi Shoji¹

¹ Waseda University, JAPAN, ² Canon Medical Systems Corp., JAPAN, and ³ Tokvo University of Science. JAPAN

M053.b SYNTHESIS OF AU@AG NANOPARTICLES AT A LOW-COST FDM-BASED 3D-PRINTED MICROFLUIDIC DEVICE

Lucas P. Bressan, Taíssa M.S. Lima, Géssica D. da Silveira, and José A.F. da Silva State University of Campinas, BRAZIL

T051.b AUTOMATED CAPILLARY DROPLET REACTOR FOR THE SYNTHESIS OF IRON OXIDE GOLD CORE-SHELL NANOPARTICLES

Christian D. Ahrberg, Ji Wook Choi, and Bong Geun Chung Sogang University, KOREA

T052.b ON-CHIP SYNTHESIS OF AU NANOPARTICLES BY MICROWAVE-INDUCED REACTION IN MICROCHANNEL EMBEDDED IN THE

POST-WALL WAVEGUIDE
Akinobu Yamaguchi¹, Mitsuyoshi Kishihara²,
Takao Fukuoka¹, Masaya Takeuchi¹,
and Yuichi Utsumi¹

¹University of Hyogo, JAPAN and

²Okayama Prefectural University, JAPAN

W052.b COFFEE CUP-SIZED MICRODROPLET RADIOSYNTHESIZER

Jia Wang, Philip H. Chao, and R. Michael van Dam University of California, Los Angeles, USA

W053.b PARTICLE ENCAPSULATION IN MICROFLUIDIC DROPLETS WITH MASS-SPECTROMETRIC INVESTIGATION OF HETEROGENEOUS REACTIONS

Monique Kretzschmar and Detlev Belder Leipzig University, GERMANY

b - Chemical Applications: Separations, Mixers and Reactions

Electrophoretic & Chromatographic Separation

M054.b COUPLING ON-CHIP SEPARATIONS TO ION MOBILITY SPECTROMETRY

Nora T. Hartner, Sebastian K. Piendl, Christian-Robert Raddatz, Christian Thoben, Rico Warias, Stefan Zimmermann, and Detlev Belder Leipzig University, GERMANY

M055.b PAPER MICROFLUIDIC CASSETTE INTEGRATED WITH PINCHING ELECTRODES FOR SPRAY PLUM FOCUSING AND HIGH PERFORMANCE MS DETECTIONS

Yi-Chieh Li and Che-Hsin Lin National Sun Yat-sen University, TAIWAN

M056.b TOWARDS USB POWERED μPADS: 5 VOLT PAPER ISOTACHOPHORESIS

²Colorado State University, USA

Federico Schaumburg¹, Pablo A. Kler¹, Claudio L.A. Berli¹, and Charles S. Henry²

1 Universidad Nacional del Litoral-CONICET, ARGENTINA and

T053.b CONTINUOUS BINARY PROTEIN SEPARATION IN A MICROFABRICATED ELECTRICAL SPLITT DEVICE

Andrea Capuano^{1,2}, Andrea Adami¹, Viviana Mulloni¹, and Leandro Lorenzelli¹

¹University of Trento, ITALY and ²Fondazione Bruno Kessler, ITALY

T054.b DEVELOPMENT OF ON-LINE DESALTING DEVICE BY MEMBRANE INTEGRATION INTO NANOFLUIDIC DEVICE

Kyojiro Morikawa, Yutaka Kazoe, Hisashi Shimizu, Kazuma Mawatari, and Takehiko Kitamori *University of Tokyo, JAPAN*

T055.b SINGLE STEP SEPARATION AND CONCENTRATION OF BIOMARKER PROTEINS USING AGAROSE BASED MINIATURIZED ISOELECTRIC GATES FOR BEDSIDE DIAGNOSTICS

Sreekant Damodara¹, Alison E. Fox-Robichaud^{1,2}, Dhruva J. Dwivedi^{1,2}, Patricia C. Liaw^{1,2}, and P. Ravi Selvaganapathy¹ ¹McMaster University, CANADA and ²Thrombosis and Atherosclerosis Research Institute, CANADA

W054.b CONTINUOUS LITHIUM EXTRACTION FROM HIGH MG2+/LI+ RATIO BRINE BASED ON ION CONCENTRATION POLARIZATION

Minsoo Lee¹, Hyukj<mark>in J. Kwon², Woochul Ju</mark>ng³, and Geunbae Lim¹

¹Pohang University of Science and Technology, KOREA,

²Massachusetts Institute of Technology, USA, and

3 Research Institute of Industrial Science and Technology, KOREA

Electrophoretic & Chromatographic Separation

W055.b MICROSCALE FORMATION OF IMMOBILIZED PH GRADIENT IN SIMPLE STRAIGHT CHANNEL

Sukyo Joung¹, Dohyun Kim², Jintae Kim³, and Minsub Chung¹ ¹Hongik University, KOREA, ²Myongji University, KOREA, and ³Konkuk University. KOREA

W056.b SMALL RNA EXTRACTION FROM CELL-LYSATE USING ISOTACHOPHORESIS

Ruba Khnouf¹, Crystal Han², and Sarah Munro³

¹Jordan University of Science and Technology, JORDAN,

²San Jose State University, USA, and ³University of Minnesota, USA

b - Chemical Applications: Separations, Mixers and Reactions

Micromixers & Microreactors

M057.b EVALUATION OF MIXING PERFORMANCE OF ON-CHIP MICROMIXER WITH LOW DEAD VOLUME BASED ON VIBRATION-INDUCED FLOW

Toshiyuki Matsui, Hiroaki Suzuki, and Takeshi Hayakawa Chuo University, JAPAN

M058.b ORGANIC CHEMICAL REACTION ON AN ELECTROWETTING-ON-DIELECTRIC (EWOD) DIGITAL MICROFLUIDIC DEVICE

Matin Torabinia, Parham Asgari, Junha Jeon, and Hyejin Moon University of Texas, Arlington, USA

M059.b THREE-DIMENSIONAL LAMINAR-FLOW MICROMIXER FOR KINETIC STUDIES OF INCREASED ACCURACY THROUGH A PRE-FOCUSED STREAM INJECTION

Sheng Ni and Levent Yobas Hong Kong University of Science and Technology, HONG KONG

T056.b 3D HELICAL MICROMIXER BY LOST WAX CASTING

Daiki Tachibana, Ken Matsubara, Yoshimi Tanaka, Hiroki Ota, and Ohmi Fuchiwaki Yokohama National University, JAPAN

T057.b DRUG MICRONIZATION USING HIGH PRESSURE MICROFLUIDICS

Deepali Arora¹, Rossen Sedev^{1,2}, Craig Priest², Chau Chun Beh¹, and Neil Foster¹

¹Curtin University, AUSTRALIA and

²University of South Australia, AUSTRALIA

T058.b PILOT-SCALE SOLVENT EXTRACTION OF HIGH-VALUE METALS

Die Yang, Moein N. Kashani, and Craig Priest University of South Australia, AUSTRALIA

T059.b VERSATILE MICROFLUIDIC PLATFORM FOR PROTOCOLS ON A CHIP VIA CAPACITIVE SENSING FOR SAMPLE DISPENSING AND SURFACE ACOUSTIC WAVE (SAW) DRIVEN MIXING

Yaqi Zhang¹, Citsabehsan Devendran¹, Alex de Marco^{1,2}, and Adrian Neild¹

¹Monash University, AUSTRALIA and ²ARC Centre of Excellence for Advanced Molecular Imaging, AUSTRALIA

Micromixers & Microreactors

W057.b AN ULTRA-RAPID ACOUSTIC MIXER BY BOUNDARY-DRIVEN MICROSTREAMING OF INTEGRATED SHARP-EDGES AND BUBBLES

Mohammadreza Rasouli and Maryam Tabrizian

McGill University, CANADA

W058.b IMPEDANCE-BASED EXCITATION-FREQUENCY OPTIMIZATION FOR A TRANSFER-TAPE-SUPPORTED LASER-MICROMACHINED CAVITATION-MICROSTREAMING MICROMIXER

> Hyunjin Jeon, Kaba Abdi Mirgissa, Kyehan Rhee, and Dohyun Kin Myongji University, KOREA

W059.b THE EFFECT OF MICROREACTOR STRUCTURE ON QUANTITATIVE ANALYSIS OF TRACE VOLATILE ORGANIC COMPOUNDS

Qi Li, Zhenzhen Xie, Michael H. Nantz, and Xiao-An Fu *University of Louisville, USA*

b - Chemical Applications: Separations, Mixers and Reactions

Particle Separation

MO60.b HIGH THROUGHPUT SEPARATION OF BACTERIA FROM BLOOD FOR SEPSIS DIAGNOSTICS USING EXTENDED

ELASTO-INERTIAL MICROFLUIDICS

Sharath Narayana Iyengar, Tharagan Kumar, Gustaf Mårtensson, and Aman Russom KTH Royal Institute of Technology, SWEDEN

M061.b PDMS-BASED MICROPOROUS SIEVING MATRICES FOR SIZE-SELECTIVE FILTRATION OF SUBMICROMETER-SIZED PARTICLES

Takatomo Ouchi, Yurika Sakurai, Kayo Nakada, Masumi Yamada, and Minoru Seki *Chiba University, JAPAN*

M062.b THE MAGNUS FORCE ON SPINNING MICROPARTICLES

Miguel Solsona¹, Hans Keizer¹, Hans L. de Boer¹, Yannick P. Klein¹, Wouter Olthuis¹, Leon Abelmann², and Albert van den Berg¹

1 University of Twente, THE NETHERLANDS, and
2 Saarland University, THE NETHERLANDS

M063.b VIABLE/NON-VIABLE CELL ASSAY USING ELECTROKINETIC DETERMINISTIC LATERAL DISPLACEMENT

Bao D. Ho, Jason P. Beech, and Jonas O. Tegenfeldt *Lund University, SWEDEN*

T060.b INERTIAL FOCUSING OF DEFORMABLE PARTICLES IN TRIANGULAR CHANNELS

Yo-han Choi, Jeong-ah Kim, and Wonhee Lee Korea Advanced Institute of Science and Technology (KAIST), KOREA

TO61.b SIZE BASED SEPARATION OF PARTICLES WITH MICROFLUIDIC VORTEX TRAPPING INCORPORATING AN ORTHOGONAL TURN

Navya Rastogi, Pranjal Seth, Ramray Bhat, and Prosenjit Sen Indian Institute of Science, INDIA

Particle Separation

T062.b THE SEPARATION AND IDENTIFICATION OF PARASITE EGGS FROM HORSE FECES

Jason P. Beech¹, Kushagr Punyani¹, Eva Tydén², and Jonas O. Tegenfeldt¹ ¹Lund University, SWEDEN and ²Swedish University of Agricultural Sciences, SWEDEN

W060.b A 3D PRINTED MODULAR MICROFLUIDIC DEVICE FOR LARGE SCALE CELL HARVESTING FROM BIOREACTORS

Mahsa Asadniaye Fardjahromi^{1,3}, Lin Ding¹, Sajad Razavi Bazaz¹, Graham Vesey², Mohsen Asadnia³, and Majid Ebrahimi Warkiani¹ University of Technology Sydney, AUSTRALIA, ² Regeneus Pty Ltd, AUSTRALIA, and ³ Macquarie University, AUSTRALIA

W061.b MULTIPLE SIZE SEPARATION OF MICROPARTICLES WITH LOW DEAD VOLUME BASED ON GRAVITY-AIDED VIBRATION-INDUCED FLOW

Naoki Kitada and Takeshi Hayakawa Chuo University, JAPAN

W062.b VERTICAL SLIT-FRACTIONATION: HIGH-THROUGHPUT PARTICLE/CELL SEPARATION

Naotaka Jin¹, Jumpei Yamamoto¹, Masumi Yamada¹, Kazuki lijima², Koji Katayama², and Minoru Seki¹ ¹ Chiba University, JAPAN and ² Tosoh Corporation, JAPAN

b - Chemical Applications: Separations, Mixers and Reactions

Other Applications in Chemistry

M064.b MICROFLUIDIC DEVICE FOR DIRECT MEASUREMENT OF INITIAL RATE OF ENZYME REACTION BY ELECTROPHORETIC FILTRATION

Junku Takao, Tatsuro Endo, Hideaki Hisamoto, and Kenji Sueyoshi Osaka Prefecture University, JAPAN

M065.b SCREENING OF RARE EARTH EXTRACTION: DIRECT ANALYSIS OF RATE AND PHASE BEHAVIOR IN A MICROPILLAR ARRAY

Claudia Binder¹, Benjamin Lageder¹, Bronwyn Bradshaw-Hajek¹, Barbara Breeze², Emma Schofield², Stephen Woollam³, and Craig Priest¹

- ¹University of South Australia, AUSTRALIA,
- ² Johnson Matthey Technology Centre, UK, and
- ³Anglo American's Technical Solutions, SOUTH AFRICA

T063.b AN INTEGRATED CHIP-APPROACH TO STUDY ENANTIOSELECTIVE HETEROGENEOUS CATALYSTS AT THE MICROSCALE

Rico Warias¹, Hannes Westphal¹, Daniele Ragno², Alessandro Massi², and Detlev Belder¹ ¹Leipzig University, GERMANY and ²University of Ferrara, ITALY

T064.b MICROFLUIDIC METHOD FOR INVESTIGATING KINETICS OF EMULSION DESTABILIZATION

Marcin Dudek¹, Diana Fernandes², Eirik H. Herø¹, and Gisle Øye¹ Norwegian University of Science and Technology, NORWAY and ²Polytechnic Institute of Porto, PORTUGAL

Other Applications in Chemistry

W063.b FEMTO-LITER PROTEIN PURIFICATION BY PARALLEL TWO-PHASE NANOFLUIDICS

Shu Matsuura, Yutaka Kazoe, and Takehiko Kitamori University of Tokyo, JAPAN

W064.b OPTIMIZATION OF PROTEIN CONJUGATION ON A USER-FRIENDLY MICROFLUIDIC CHIP

Andrew W.L. Kinman and Rebecca R. Pompano University of Virginia, USA

c - Diagnostics, Drug Testing & Personalized Medicine

Cancer Research, Capture & Analysis of Circulating Tumor Cells

M066.c A MICROFLUIDIC PLATFORM FOR DIAGNOSIS OF OVARIAN CLEAR **CELL CARCINOMA VIA QUANTIFICATION OF FXYD2 GENE**

Ting-Hang Liu1, Chang-Ni Lin2,3, Keng-Fu Hsu2,3, and Gwo-Bin Lee1

¹National Tsing Hua University, TAIWAN, ²National Cheng Kung University Hospital, TAIWAN, and 3 National Cheng Kung University, TAIWAN

ARRAY OF MICRO-MAGNETS FOR CTC SORTING IN M067.c LAB-ON-A-CHIP DEVICES

Lucie Descamps¹, Samir Mekkaoui¹, Emmanuelle Laurenceau¹, Marie-Charlotte Audry¹, Jessica Garcia², Léa Payen², Damien Le Roy3, and Anne-Laure Deman1

¹Lyon Institute of Nanotechnology, FRANCE,

DEVELOPING AN OPTICAL DNA MAPPING TOOLBOX TO IDENTIFY M068.c CHROMOSOMAL TRANSLOCATIONS IN ACUTE MYELOID LEUKEMIA

Miriam Hitz^{1,2}, Gaurav Goyal², Vilhelm Müller², Linda Fogelstrand³, and Fredrik Westerlund2

¹University of Applied Sciences, Aachen, GERMANY,

M069.c RAPID AND VIABLE ISOLATION OF HETEROGENEOUS CIRCULATING TUMOR CELLS USING HIGH-DENSITY TAPERED-SLIT FILTERS

Jae-Eul Shim¹, Jiyoon Bu¹, Mi-Kyung Lee¹, Young-Ho Cho¹,

Tae-Ha Kim2, Jong-Uk Bu2, and Sae-Won Han3

¹Korea Advanced Institute of Science and Technology (KAIST), KOREA,

²SenPlus, Ltd., KOREA, and ³Seoul National University Hospital, KOREA

A HERRINGBONE MICROFLUIDIC PROBE FOR AFFINITY T065.c SEPARATION OF CELLS

Ayoub Glia1,2, Pavithra Sukumar1, Muhammedin Deliorman1, and Mohammad Qasaimeh1,2

¹New York University, Abu Dhabi, UAE and ²New York University, NY, USA

²Hospices Civils de Lyon, FRANCE, and

³Institut Lumière Matière, FRANCE

²Chalmers University of Technology, SWEDEN, and

³ Sahlgrenska University Hospital, SWEDEN

Cancer Research, Capture & Analysis of Circulating Tumor Cells

TO66.C AN INTEGRATED MICROFLUIDIC PLATFORM TO DETECT TUMOR CELLS FROM BILE JUICE OF CHOLANGIOCARCINOMA PATIENTS BY USING NOVEL AFFINITY REAGENTS

Wen-Yen Huang¹, Nai-Jung Chiang², Cheng-Hsiu Chang³, Priya Gopinathan¹, Terry D. Juang¹, Hsiu-Chi Tu², Yen-Shen Shan², Shang-Cheng Hung³, and Gwo-Bin Lee¹

¹National Tsing Hua University, TAIWAN, ²National Cheng Kung University Hospital, TAIWAN, and ³Academia Sinica, TAIWAN

T067.c BIOPHYSICS OF CIRCULATING TUMOR CELL CLUSTERS

Baris R. Mutlu¹, Taronish Dubash¹, Claudius Dietsche², Avanish Mishra¹, Kevin Keim³, Jon Edd¹, Daniel Haber¹, Shyamala Maheswaran¹, and Mehmet Toner¹ ¹Massachusetts General Hospital and Harvard Medical School, USA, ²ETH Zürich, SWITZERLAND, and °École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

TO68.c MONITORING IMMUNOLOGICAL SYNAPSES AT SINGLE CELL LEVEL IN A MICROFLUIDIC DEVICE

Faruk A. Shaik¹, Clara Lewuillon¹.², Yasmine Touil¹.², Aurélie Guillemette¹.², Bruno Quesnel¹.², Carine Brinster¹.², Loïc Lemonnier³, Dominique Collard⁴, and Mehmet C. Tarhan⁵ ¹ University of Lille, FRANCE, ²INSERM UMRS-1172, FRANCE, ³INSERM U1003, FRANCE, ⁴University of Tokyo, JAPAN, and ⁵IEMN UMR-8520, FRANCE

T069.C SEPARATION/CAPTURE OF CANCER CELLS IN BLOOD USING A NUCLEIC-ACID APTAMER MODIFIED DYNAMIC DEFORMABLE MICROFILTER

Yuta Nakashima¹, Soichiro Fukuyama¹, Seitaro Kumamoto¹, Keiichiro Yasuda², Yusuke Kitamura¹, Masaaki Iwatsuki¹, Hideo Baba¹, Toshihiro Ihara¹, and Yoshitaka Nakanishi¹ ¹ Kumamoto University, JAPAN and ² Ogic Technologies, JAPAN

W065.c A MICROFLUIDIC PLATFORM FOR APPLYING LOCALIZED AND DYNAMICALLY-CONTROLLED COMPRESSION ON CANCER CELLS

Sevgi Onal, Maan M. Alkaisi, and Volker Nock *University of Canterbury, NEW ZEALAND*

W066.c APPLICATION OF DNA-DIRECTED PATTERNING TO FABRICATE AN IN VITRO BONE MARROW MICROENVIRONMENT FOR THE HIGH-THROUGHPUT STUDY OF PROSTATE CANCER DORMANCY Molly Kozminsky and Lydia Sohn

University of California, Berkeley, USA

W067.c FOCUSING AND SORTING OF TUMOR CELL CLUSTERS IN AN INERTIAL MICROCHANNEL

Jian Zhou, Qiyue Luan, and lan Papautsky University of Illinois, Chicago, USA

Cancer Research, Capture & Analysis of Circulating Tumor Cells

W068.c PICKING OF CIRCULATORY TUMOR CELLS (CTC'S) USING A MICRO FABRICATED GLASS PIPETTE INTEGRATED WITH SACA CHIP BASED DIGITIZED IMAGING SYSTEM (DIGI-SACA)

Ping-Hao Yeh1, Venkanagouda S. Goudar1, Hsin-Yao Wu1,

Hsueh-Yao Chu1, and Fan-Gang Tseng1,2

¹National Tsing Hua University, TAIWAN and

²Academica Sinica, TAIWAN

c - Diagnostics, Drug Testing & Personalized Medicine

Clinical Chemistry

W069.c IN SITU TOTAL ANALYSIS SYSTEM OF CLINICALLY ACTIONABLE GENETIC ABERRATIONS OF SINGLE CIRCULATING TUMOR CELLS ON CHIP

Amos Chungwon Lee¹, Jessica Svedlund², Evangelia Darai², Yongju Lee¹, Ahyoun Choi¹, Sumin Lee¹, Seo Woo Song¹,

Daewon Lee¹, Yeongjae Choi¹, Yunjin Jeong¹,

Narayanan Madaboosi², Mats Nilsson²,

and Sunghoon Kwon¹

¹Seoul National University, KOREA and

²Science for Life Laboratory, SWEDEN

c - Diagnostics, Drug Testing & Personalized Medicine

Diagnostic Devices

M070.c A CMOS-BASED LAB-ON-CHIP DIAGNOSTIC SYSTEM FOR RAPID DETECTION AND WORLDWIDE MONITORING OF AZOLE-RESISTANT ASPERGILLUS FUMIGATUS

Ling-Shan Yu, Jesus Rodriguez-Manzano, Nicolas Moser, Kenny Malpartida-Cardenas, Thomas Sewell, Matthew C. Fisher, and Pantelis Georgiou Imperial College London, UK

M071.c A MICRONEEDLE-BASED LATERAL FLOW IMMUNOASSAY FOR RAPID PROTEIN DETECTION

Xue Jiang and Peter B. Lillehoj Michigan State University, USA

M072.c A SIMPLE POINT-OF-CARE TEST FOR DRUG MONITORING IN WHOLE BLOOD OF PATIENTS WITH AUTOIMMUNE DISEASES

Henry Ordutowski, Francesco Dal Dosso, Séverine Vermeire, Ann Gils, Jeroen Lammertyn, and Dragana Spasic KU Leuven, BELGIUM

M073.c CAPILLARY DRIVEN POROUS PDMS MICRONEEDLE FOR NAKED-EYE GLUCOSE SENSOR

Hakjae Lee, Kai Takeuchi, Yui Sasaki, Nobuyuki Takama, Tsuyoshi Minami, and Beomjoon Kim *University of Tokyo, JAPAN*

Diagnostic Devices

M074.c DEVELOPMENT AND CLINICAL TESTING OF A MICROFLUIDIC IMMUNOAFFINITY BASOPHIL ACTIVATION TEST FOR POINT-OF-CARE ALLERGY DIAGNOSIS

Frida Kalm^{1,2}, Zenib Aljadi^{1,2}, Harisha Ramachandraiah², Caroline Nilsson^{1,3}, Ola Winqvist⁴, Joachim Lundahl^{1,2}, Anna Nopp^{1,2}, and Aman Russom²

¹Karolinska Institutet and, SWEDEN, ²KTH Royal Institute of Technology, SWEDEN, ³Sachs' Children and Youth Hospital, SWEDEN, and ⁴Karolinska University Hospital, SWEDEN

M075.c FLOW VISUALIZATION IN A CORONARY NETWORK WITH MICROVASCULAR OBSTRUCTION (MVO) USING A MULTISCALE IN-VITRO BENCHTOP MODEL

Mirunalini Thirugnanasambandam¹, Christian Wüthrich¹, Sabrina Frey¹, Peter Heeb², Cornelia Nef², André Bernard², and Dominik Obrist¹

¹University of Bern, SWITZERLAND and

²University of Applied Sciences Buchs NTB, SWITZERLAND

M076.c FULLY-INTEGRATED CARTRIDGE FOR FAST POINT-OF-CARE DIAGNOSIS OF PERIODONTAL DISEASE

Katherine E. Boehle, J. Jacob Carrano, and John C. Carrrano Paratus Diagnostics, LLC, USA

M077.c IOT PCR SYSTEM FOR DISEASE DETECTION AND SPREAD MONITORING

Hanliang Zhu¹, Pavel Podesva¹, Xiaocheng Liu¹, Haoqing Zhang¹, Tomas Teply², Ying Xu¹, Honglong Chang¹, Airong Qian¹, and Pavel Neuzil¹

¹Northwestern Polytechnical University, CHINA and

²Czech Technical University, CZECH REPUBLIC

M078.c NANOFLUIDIC BARCODES FOR QUANTIFICATION/IDENTIFICATION OF BIOMARKERS

Sokhna M. Ngom¹, François-Damien Delapierre², Fatima Flores-Galicia¹, Stephane Guilet¹, Edmond Cambril¹, Jean Gamby¹, Antoine Pallandre³, Isabelle Le Potier¹, and Anne-Marie Haghiri-Gosnet¹ ¹C2N-CNRS, FRANCE, ²SPEC-CEA, FRANCE, and ³LCP-CNRS, FRANCE

M079.C OPTIMIZING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY BASED IMMUNOASSAYS ON ZINC-OXIDE-NANOWIRE PAPER-BASED ELECTRODES

Xiao Li^{1,2,3}, Hao Fu^{1,2}, Ted Li², and Xinyu Liu^{1,2}

¹ University of Toronto, CANADA, ² McGill University, CANADA, and

³ Stanford University, USA

M080.c POINT-OF-CARE HIV NUCLEIC ACID SCREENING WITH A MAGNETOFLUIDIC ON-DEMAND ASSAY CARTRIDGE

Alexander Y. Trick, Fan-En Chen, Liben Che, and Tza-Huei Wang Johns Hopkins University. USA

Diagnostic Devices

M081.c RAPID SEPSIS DIAGNOSIS BY PHAGOCYTIC ACTIVITY OF IMMUNE CELLS

Seyong Kwon, Min Seok Lee, and Joo H. Kang Ulsan National Institute of Science and Technology (UNIST), KOREA

M082.c SELF-CONTAINED DIAGNOSTIC PLATFORM FOR PATHOGEN AND ANTIBIOTIC RESISTANCE DETECTION FOR DIABETIC FOOT ULCERS

Joerg Nestler¹, Cornelia Stiehl¹, Jenny Graunitz^{1,5}, Sascha Geidel^{1,2}, Andreas Morschhauser², Thomas Otto², Martina Schneemann^{2,6}, Apoorva Jnana³, Thokur Streepathy Murali³, Kapaettu Satyamoorthy³, Sakthi U. Maheswari⁴, Siddharth Ramakrishnan⁴, Purbasha Halder⁴, Dhananjaya Dendukuri⁴, Frank F. Bier⁵, and Harald Peter⁶ ¹BiFlow Systems GmbH, GERMANY, ²Fraunhofer ENAS, GERMANY, ³Manipal Academy of Higher Education, INDIA, ⁴Achira Laboratories Pvt. Ltd., INDIA, ⁵Potsdam University, GERMANY, and ⁶Fraunhofer IZI-BB, GERMANY

M083.c THIN POLYMERIC SHEET-BASED IMMUNOASSAY PLATFORMS INTEGRATED WITH MICRO/NANO-IMPRINTED MULTISCALE ARCHITECTURES

Shuhei Aoyama^{1,2}, Yuto Akiyama², Kenji Monden², Masumi Yamada¹, and Minoru Seki¹ ¹ Chiba University, JAPAN and ² Denka Co., Ltd., JAPAN

M084.c WORLD-TO-CHIP INTERFACE FOR BLOOD-PLASMA SEPARATION ON A DIGITAL MICROFLUIDIC DEVICE

Christopher Dixon, Julian Lamanna, and Aaron R. Wheeler University of Toronto, CANADA

T070.c A LAB-ON-A-DISK DEVICE FOR ISOLATION AND IDENTIFICATION OF PARASITE EGGS IN STOOL

Sertan Sukas¹, Bieke Van Dorst², Agata Kryj¹, Ole Lagatie², Wim De Malsche¹, and Lieven Stuyver²

¹Vrije Universiteit Brussel, BELGIUM and

T071.c A NOVEL DIAGNOSTIC DEVICE FOR RAPID TESTING OF ANTIBIOTIC ALLERGIES: FOCUS ON FLUIDIC DESIGN AND MANUFACTURING OF DISPOSABLE DISCS

Elizaveta Vereshchagina¹, Sergi Morais², Luis A. Tortajada-Genaro², Angel Maquieira², Estrella Fernandez², Teresa Molina², Veaceslav Linte³, Brindus Comanescu³, Michal M. Mielnik¹, Erik Andreassen⁴, Anna Franquesa-Vazquez⁵, Werner Balika⁵, Alfredo Sáez⁶, and Sergio Peransi Llopis⁶

¹SINTEF Digital, NORWAY, ²Universitat Politècnica de València, SPAIN, ³Optoelectronica, ROMANIA, ⁴SINTEF Industry, NORWAY, ⁵STRATEC Consumables GmbH, AUSTRIA, and ⁶Lumensia Sensors, SPAIN

² Janssen Diagnostics, BELGIUM

Diagnostic Devices

T072.c AN INTEGRATED MICROFLUIDIC DEVICE FOR BLOOD PLASMA SEPARATION AND IMMUNOASSAY DETECTION

Stanley C. Liu¹, Suraiya Rasheed², Neha Garg³, Paul Yoo³, Mohammad Aghaamoo³,and Abraham Lee³

¹Arcadia High School, USA, ²University of Southern California, USA, and ³University of California, Irvine, USA

T073.c CHIP-AND-DIP: CAPILLARY-DRIVEN FLOW DEVICES FOR POINT-OF-CARE DIAGNOSTICS

Sammer-ul Hassan and Xunli Zhang University of Southampton, UK

T074.c DEVELOPMENT OF AN AFFORDABLE AND SENSITIVE DIAGNOSTIC TEST FOR DENGUE DISEASE USING MICROFLUIDICS AND SMARTPHONES

Sophie M. Jégouic¹ and Alexander D. Edwards¹.²¹ University of Reading, UK and ² Capillary Firm Technology Ltd, UK

T075.c FLUORESCENCE SIGNAL AMPLIFICATION FOR SENSITIVE ENZYME IMMUNOASSAY UTILIZING AN IMMUNO-WALL

Keine Nishiyama¹, Toshihiro Kasama², Masatoshi Maeki¹, Akihiko Ishida¹, Hirofumi Tani¹, Yoshinobu Baba³, and Manabu Tokeshi¹ ¹Hokkaido University, JAPAN, ²University of Tokyo, JAPAN, and

³Nagoya University, JAPAN

T076.c HEMORHEOMETER-ON-A-CHIP: ANALYSIS OF BLOOD BIOPHYSICAL PARAMETERS IN A MICROCHANNEL

Ziya Isiksacan, Murat Serhatlioglu, and Caglar Elbuken Bilkent University, TURKEY

T077.C LAB-ON-CHIP PLATFORM WITH FULLY INTEGRATED SAMPLE PREPARATION MODULE COUPLED WITH A HYBRIDIZATION-FREE SURFACE ACOUSTIC WAVE SENSOR FOR RAPID FOODBORNE PATHOGEN DETECTION

Katerina Tsougeni¹, Georgia Kaprou¹.², Christos-Mortiz Loukas¹, George Papadakis³, Audrey Hamiot⁴, Michael Eck⁵, David Rabus⁶, George Kokkoris¹, Vasileios Papadopoulos¹, Bruno Dupuy⁴, Gerhard Jobust⁶, Electra Gizeli².³, Angeliki Tserepi¹.², and Evangelos Gogolides¹.²

¹NCSR-Demokritos, GREECE, ²University of Crete, GREECE, ³Institute of Molecular Biology and Biotechnology-FORTH, GREECE, ⁴Institute Pasteur, FRANCE, ⁵Jobst Technologies GmbH, GERMANY, and ⁶SENSeOR SAS, FRANCE

TO78.c NANOPLASMO-FLUIDIC PCR CHIP WITH MICROLITER VOLUME FOR RAPID DIAGNOSTICS

Byoung-Hoon Kang¹, Youngseop Lee², and Ki-Hun Jeong¹

*Korea Advanced Institute of Science and Technology (KAIST),
KOREA and *2University of California, Berkeley, USA

Diagnostic Devices

T079.c PAPER-BASED DEVICE WITH INTEGRATED ION-SELECTIVE OPTODES FOR COLORIMETRIC QUANTIFICATION OF SALIVARY METAL IONS

Yasuhiro Suenaga, Hiroyuki Shibata, Yuki Hiruta, and Daniel Citterio Keio University, JAPAN

TO801.C POROUS MICRONEEDLE ELECTRODES FOR THE ELECTROCHEMICAL SENSING ON SKIN

Hiroyuki Kai Tohoku University, JAPAN

T081.c REUSABLE MICROFLUIDIC DEVICE FOR COMPLETE BLOOD COUNT APPLICATIONS

Damien Isebe¹, Amin Amirouche², Jean L. Papilleau¹, Philippe Piedcoq¹, Manuel Alessio², Nicolas Verplanck², Pierre Blandin², Anaïs Ali-Cherif¹, and Yves Fouillet² ¹HORIBA Medical, FRANCE and ²CEA, LETI-Health, FRANCE

T082.c SINGLE-STEP BIOLUMINESCENCE LATERAL FLOW IMMUNOASSAYS FOR DIAGNOSTICS

Riho Shimazu¹, Junnosuke Kawahara¹, Kosuke Tomimuro¹, Kazushi Misawa¹, Yan Ni², Yuki Hiruta¹, Maarten Merkx², and Daniel Citterio¹

1 Keio University, JAPAN and ² Eindhoven University of Technology, THE NETHERLANDS

TO83.c TOWARDS INTEGRATED, AUTONOMOUS AND LOW-COST DIAGNOSTICS AT THE POINT-OF-CARE FROM WHOLE BLOOD TO ANSWER

Amin Kazemzadeh, Ruben R.G Soares, Noa Lapins, and Aman Russom KTH Royal Institute of Technology, SWEDEN

W070.c A LARGE-VOLUME SPUTUM COLLECTION AND DRY-STORAGE DEVICE FOR TUBERCULOSIS MOLECULAR DIAGNOSTIC TESTING

Bhushan J. Toley, Andrea Dsouza, and Saylee Jangam *Indian Institute of Science, INDIA*

W071.c A PORTABLE AND FULLY AUTOMATED SYSTEM FOR RAPID DETECTION OF PROTEIN BIOMARKERS IN PERIPHERAL BLOOD

Minjie Shen¹, Nan Li¹, and Youchun Xu^{1,2}

¹Tsinghua University, CHINA and ²National Engineering
Research Center for Beijing Biochip Technology, CHINA

W072.c AUTOMATED PORTABLE DEVICE FOR ANTIMICROBIAL SUSCEPTIBILITY TEST OF ANTIBIOTICS COMBINATION

Kuo-Wei Hsu¹, Wen-Bin Lee¹, Huey-Ling You², Mel S. Lee², and Gwo-Bin Lee¹

¹National Tsing Hua University, TAIWAN and

²Kaohsiung Chang Gung Memorial Hospital, TAIWAN

Diagnostic Devices

W073.c DESIGNING, MANUFACTURING, AND VERIFICATION OF RAPID DIAGNOSIS KIT CARTRIDGES FOR UNDILUTED WHOLE

BLOOD APPLICATIONS

Yo Han Choi and Kwang Hyo Chung Electronics and Telecommunications Research Institute, KOREA

W074.c DISTANCE READOUT-BASED PAPER DEVICES FOR MULTIPLEXED URINALYSIS

Rika Sawano, Hiroyuki Shibata, Kento Maejima, Yuki Hiruta, and Daniel Citterio *Keio University, JAPAN*

W075.c FULLY-AUTOMATED SENSITIVE BLOOD-TYPING CHIP

Ken Yamamoto, Ryosuke Sakurai, and Masahiro Motosuke Tokyo University of Science, JAPAN

W076.c HYBRIDIZATION-BASED DNA ANALYSIS BY SELF-HEATING NANOWIRE MICROFLUIDIC DEVICES

Hiromi Takahashi¹, Takao Yasui^{1,2}, Keiko Shinjo¹, Quanli Liu¹, Taisuke Shimada¹, Noritada Kaji³, Hiromu Kashida¹, and Yoshinobu Baba^{1,4}

¹Nagoya University, JAPAN, ²Japan Science and Technology Agency (JST), JAPAN ³Kyushu University, JAPAN, and ⁴National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W077.c LAB-ON-PCB PLATFORM FOR THE SENSITIVE AND RAPID DETECTION OF URINARY TRACT INFECTIONS

Georgia Kaprou, Myrto Fillipidou, Sotiris Douskas, George Kokkoris, Panagiota Petrou, Dimitris Mastellos, Stavros Chatzandroulis, and Angeliki Tserepi

National Center for Scientific Research 'Demokritos', GREECE

W078.c RAPID SALIVA SAMPLING AND DIAGNOSTIC LAB-ON-A-CHIP FOR POINT-OF-CARE TESTING (POCT) OF UNBOUND PARA THYROID HORMONE (PTH)

Vinitha TU, Sthitodhi Ghosh, Alexander Milleman, Thinh H. Nguyen, and Chong H. Ahn *University of Cincinnati, USA*

W079.C PHASE CHANGE MATERIALS AS AN ENABLER FOR MALARIA DETECTION IN LOW-RESOURCE SETTINGS

Dries Vloemans¹, Francesco Dal Dosso¹, Carlos L. Orero¹, Joanne Macdonald².³, and Jeroen Lammertyn¹ ¹KU Leuven, BELGIUM, ²University of the Sunshine Coast, AUSTRALIA, and ³Columbia University, USA

W080.c PRODUCT DEVELOPMENT OF A PORTABLE MICROFLUIDIC DEVICE FOR THE DETECTION OF BACTERIAL CONTAMINATION IN ENVIRONMENTAL LIQUID SAMPLES

Luis F. Alonzo¹, Andrew Miller¹, Troy Hinkley¹, Anne-Laure M. Le Ny¹, Sam R. Nugen², and Kevin P. Nichols¹

¹Intellectual Ventures Lab, USA and ²Cornell University, USA

Diagnostic Devices

W081.c SEGMENTED MICROFLUIDICS ASSISTED BACTERIAL ISOLATION FOR SEPSIS DIAGNOSIS FROM LARGE VOLUME OF BLOOD

Suhanya Duraiswamy^{1,2}, Wu Ruige¹, and Wang Zhiping¹ ¹SIMTech. SINGAPORE and

²Indian Institute of Technology Hyderabad, INDIA

W082.c SLurp: A MODULAR SCALABLE AUTOMATED MICROFLUIDIC SYSTEM FOR DIAGNOSTIC ASSAY OPTIMIZATION AND CARTRIDGE PROTOTYPING

Carlos F. Ng1, David P. Kalish1, Anne V. Cheng1, Richie E. Kohman1,2, Jenny M. Tam1,2, George M. Church1,2, Richard Novak1, and Donald E. Ingber 1,2,3

¹Harvard University, USA, ²Harvard Medical School, USA, and

³Boston Children's Hospital, USA

W083.c TOWARDS POINT-OF-CARE HIV DIAGNOSTICS USING **DUAL-LABELLED ROLLING CIRCLE PRODUCTS FOR EFFICIENT CAPTURE AND DETECTION IN A** MICROFLUIDIC DEVICE

Ruben R.G. Soares1, Sibel Cftci2, João C. Varela2, Ashokkumar Manickam3, Ujiwal Neogi3,4, Mats Nilsson2, Narayanan Madaboosi2, and Aman Russom1 ¹KTH Royal Institute of Technology, SWEDEN, ²Stockholm University, SWEDEN, 3 Karolinska Institutet, SWEDEN and 4 University of Missouri, USA

c - Diagnostics, Drug Testing & Personalized Medicine

Drug Development, Screening & Drug Delivery

FABRICATION OF 3D IN VITRO MICRO-PHYSIOLOGICAL SYSTEM M085.c CAPABLE TO STUDY THE SYSTEMIC DELIVERY OF ONCOLYTIC VIRUS

Sang Woo Lee1, Kyoung Jin Lee2, Soo Yeon Jeong1, HeuiRan Lee2, and Gi Seok Jeong1 ¹Asan Medical Center, KOREA and ²University of Ulsan College of Medicine, KOREA

M086.c FIBER-SHAPED 3D TISSUE IN A 96 WELL PLATE FOR HIGH-THROUGHPUT DRUG SCREENING

Midori Kato-Negishi^{1,2}, Jun Sawayama¹, and Shoji Takeuchi¹ ¹University of Tokyo, JAPAN and ²Musashino University, JAPAN

TOWARDS EFFICIENT DRUG CARRIERS - FUNCTIONALIZED M087.c GRAPHENE OXIDE STUDY ON 2D-MONOLAYER AND 3D-SPHEROID BREAST CANCER MODELS

Agnieszka Zuchowska, Artur Kasprzak, Kamil Zukowski. Marta Mazurkiewicz-Pawlicka, Artur Malolepszy, Elzbieta Jastrzebska, Magdalana Poplawska, and Zbigniew Brzozka Warsaw University of Technology, POLAND

DIGITAL MICROFLUIDIC DRUG SCREENING ON BIOPSIES FROM T084.c XENOGRAFT MOUSE BREAST CANCER

Jiao Zhai, Yanwei Jia, Pui-in Ma, and Rui P. Martins University of Macau, CHINA

Drug Development, Screening & Drug Delivery

T085.c MICROFLUIDIC IMMOBILIZED ENZYME REACTORS FOR PREDICTION OF DRUG CLEARANCE IN VIVO

liro Kiiski¹, Sanna Artes¹, Ville Jokinen², Päivi Järvinen¹, and Tiina Sikanen¹

¹University of Helsinki, FINLAND and ²Aalto University, FINLAND

TO86.c MICROSYSTEM FOR EVALUATION THE EFFECTIVENESS OF THERAPEUTIC PROCEDURES (CT AND ECT)

Sandra Skorupska, Ilona Grabowska-Jadach, Artur Dybko, and Zbigniew Brzózka

Warsaw University of Technology, POLAND

T087.c ULTRA-HIGH-THROUGHPUT SCREENING OF BACTERIAL LIBRARIES TO IDENTIFY NOVEL METABOLITES THAT INDUCE MITOCHONDRIAL BIOGENESIS AND FUNCTION

Anna Desalvo¹, Catherine Klapholz¹, Gareth Ettridge², Christina Kahramanoglou¹, Kamila Bienkowska¹, Robert Lightowlers², Doug Turnbull², and Stuart Wood¹ ¹Nanna Therapeutics Ltd, UK and ²Wellcome Centre for Mitochondrial Research, UK

W084.c EXTRAVASATION OF SOFT NANOPARTICLES SIMULATED ON AN EASY-TO-OBSERVE MEMBRANE-INTEGRATED MICROFLUIDIC DEVICE

Mayu Watanabe¹, Yumi Moriya¹, Hiroaki Matsuba², Akihiro Kishimura², Yoshiki Katayama², and Naoki Sasaki¹

1 Toyo University, JAPAN and 2 Kyushu University, JAPAN

W085.c INJECTABLE WIRELESS MICRO-DEVICE INTEGRATED WITH PHOTODEGRADABLE HYDROGEL FOR DEEP TISSUE THERAPEUTICS

Sophie Lian¹, Yi Liu¹, Rongzhou Lin^{1,2}, John.S. Ho^{1,2}, and Chia-Hung Chen^{1,2}

¹National University of Singapore, SINGAPORE and ²Institute for Health Innovation and Technology (iHealthtech), SINGAPORE

W086.c SIDE-BY-SIDE 2D AND 3D CELL CULTURING MICRODEVICES FOR DRUG TOXICITY SCREENING

Päivi Järvinen¹, Ashkan Bonabi¹, Ville Jokinen², and Tiina Sikanen¹ ¹ *University of Helsinki, FINLAND and* ² *Aalto University, FINLAND*

W087.c ULTRASOUND-TRIGGERED CONTROLLED RELEASE OF NANOPARTICLES FROM HYDROGEL MICROBEADS BY RELEASE-PROMOTING PARTICLES

Takeshi Kubota¹, Yuta Kurashina^{1,2}, and Hiroaki Onoe¹

¹ Keio University, JAPAN and ² Tokyo Institute of Technology, JAPAN

c - Diagnostics, Drug Testing & Personalized Medicine

Liquid Biopsy and Sample Preparation

M088.c BIOMIMETIC MEMBRANE ENABLED MULTIVALENT MICROFLUIDIC CHIP FOR HIGHLY EFFICIENT ENRICHMENT OF CIRCULATING TUMOR CELLS

Lingling Wu¹, Xin Qu¹, Yanling Song¹, and Chaoyong Yang^{1,2}

¹ Shanghai Jiao Tong University School of Medicine, CHINA and

² Xiamen University, CHINA

M089.c HANDHELD DEVICE FOR CENTRIFUGATION-FREE NUCLEIC ACID EXTRACTION

Ruige Wu, Pinhui Lee, Ke Gan, Wei Hua, and Zhiping Wang Singapore Institute of Manufacturing Technology (A*Star), SINGAPORE

M090.c INTEGRATED MICROFLUIDIC DEVICE FOR CIRCULATING EXOSOMES DETECTION TOWARDS BREAST CANCER DIAGNOSIS

Wenwen Chen¹, Wentao Su¹, Hongjing Li², and Jianhua Qin¹

¹ Chinese Academy of Sciences, CHINA and

² First Affiliated Hospital of Dalian Medical University, CHINA

M091.c MICROFLUIDIC DEVICE FOR THE SEPARATION OF BLOOD PLASMA FROM CAPILLARY SAMPLES

Giulia Deiana¹, Alvaro J. Conde^{1,2}, Conni McCarthy^{1,2}, James Dear¹, Stewart Smith¹, and Maïwenn Kersaudy-Kerhoas^{1,2} ¹University of Edinburgh, UK and ²Heriot-Watt University, UK

TO88.c CREATING A MAP FOR SURGEONS: DIRECT BLOTTING ASSISTED STAMPING OF TISSUE FOR MALDI IMAGING MASS SPECTROMETRY USING DISCONTINUOUS

DE-WETTED ARRAYS

Katherine Donovan, Haidy Metwally, Prashant Agrawal, David Simon, David Berman, and Richard Oleschuk Queen's University, CANADA

TO89.C HIGH-THROUGHPUT SEPARATION AND COLLECTION OF EXOSOMES BASED ON SURFACE ZETA POTENTIAL TOWARD EXOSOMAL DIAGNOSTICS AND THERAPY

Hiroaki Takehara^{1,2}, Hiromi Kishita¹, Shusuke Sato², and Takanori Ichiki^{1,2}

¹ University of Tokyo, JAPAN and ² Innovation Center of NanoMedicine (iCONM), JAPAN

T090.c LONG DNA ISOLATION AND IMAGING USING LATERAL DISPLACEMENT ARRAYS INTEGRATED WITH DNA COMBING

Oskar E. Ström, Ja<mark>son P. Beech, and Jonas</mark> O. Tegenfeldt *Lund University, SWEDEN*

Liquid Biopsy and Sample Preparation

T091.c NITROGEN-MUSTARD COATED MAGNETIC BEADS FOR HYBRIDIZATION AND ELUTION-FREE CIRCULATING TUMOR DNA DETECTION

Benediktus N. Hapsianto¹, Naoshi Kojima², Ryoji Kurita², Hitoshi Yamagata³, Hiroyuki Fujita³, Teruo Fujii¹, and Soo Hyeon Kim¹

1 University of Tokyo, JAPAN, ²National Institute of Advanced

¹University of Tokyo, JAPAN, ²National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, and ³Canon Medical Systems Corporation, JAPAN

W088.c SEARCHING CANCER-SPECIFIC EXTRACELLULAR VESICLE USING SIZE FRACTION AND SINGLE VESICLE ANALYSIS

Dongyoung Kim¹, Hyun-Kyung Woo^{1,2}, Chaeeun Lee^{1,2}, Yoohong Min¹, and Yoon-Kyoung Cho^{1,2}

¹Institute for Basic Science (IBS), KOREA and ²Ulsan National Institute of Science & Technology (UNIST), KOREA

W089.C INKJET-PRINTING BASED INTEGRATION OF MICROFLUIDICS ON FROZEN SECTION FOR SPATIALLY STAINING

Fengyi Zheng¹, Jiasheng Huang¹, Xiaoyi Shi¹, Fei Pei², and Zhihong Li¹

1 Peking University, CHINA and 2 Peking University Health Science Center. CHINA

W090.c MAGNETIC BEAD FREE DNA EXTRACTION ENABLED BY EWOD DIGITAL MICROFLUIDICS

Shubhodeep Paul and Hyejin Moon University of Texas, Arlington, USA

W091.c POLYVINYL ALCOHOL (PVA)-FUNCTIONALIZED FILTER FOR EFFECTIVE CELL CAPTURE AND RELEASE

Tingyu Li¹, Yaoping Liu¹, and Wei Wang¹.²
¹Peking University, CHINA and ²National Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

c - Diagnostics, Drug Testing & Personalized Medicine

Neurobiology/Neuroscience

M092.c BACK-TO-BACK CO-CULTURE OF NEURONS/ASTROCYTES ON A MICROPOROUS SIN MEMBRANE AND MULTICHANNEL MEASUREMENT OF NEURONAL POTENTIAL USING A MICROELECTRODE ARRAY

Satoshi Yoshida and Takashi Yasuda Kyushu Institute of Technology, JAPAN

M093.c ON-LINE MICRODIALYSIS-MICROCHIP ELECTROPHORESIS WITH ELECTROCHEMICAL DETECTION FOR CONTINUOUS IN VIVO MONITORING OF CATECHOLAMINES

Susan M. Lunte, Shamal M. Gunawardhana, Galina A. Bulgakova, and Sara R. Thomas University of Kansas, USA

Neurobiology/Neuroscience

T092.c CHARACTERIZATION OF NEURON SIGNALING USING MICROELECTRODE ARRAY COMBINED WITH FAST AND PRECISE COOLING DEVICE FOR CRYOANESTHESIA

Jaehyun Kim¹, Jong Seung Lee², Soyeon Noh³, Nuree Lee¹, Jungchul Lee⁴, Taesung Kim³, Gunho Kim³, Seung-Woo Cho², and Jungyul Park¹

¹Sogang University, KOREA, ²Yunsei University, KOREA, ³Ulsan National Institute of Science and Technology (UNIST), KOREA, and ⁴Korea Advanced Institute of Science and Technology (KAIST), KOREA

W092.c ELECTROPHYSIOLOGICAL RECORDINGS OF CORTICO-STRIATAL NETWORK ACTIVITY IN MICROFLUIDIC-MEA-HYBRID SYSTEM

Jelena Stevanović^{1,2}, Kathrin Zobel¹, Bernhard Wolfrum¹, and Andreas Offenhäusser¹ ¹Forschungszentrum Jülich GmbH, GERMANY and

c - Diagnostics, Drug Testing & Personalized Medicine

Nucleic-Acid Analysis

M094.c A VERSATILE MICROFLUIDIC PLATFORM FOR AUTOMATING COMPLEX BIOLOGICAL AND CHEMICAL PROTOCOLS

Mais J. Jebrail, Eugenia Carvajal, Eduardo Cervantes, Poornasree Kumar, Winnie Chow, Yu-Hung Chen, and Foteini Christodoulou *Miroculus, USA*

M095.c DIAGNOSIS OF METHYLATED DNA FRAGMENTS OF TUMOR SUPPRESSOR GENES IN BLOOD BY UTILIZING METHYLATION-SPECIFIC APTAMERS ON A MICROFLUIDIC SYSTEM

Chih-Hung Wang and Gwo-Bin Lee National Tsing Hua University, TAIWAN

²RWTH Aachen University

M096.c HAIRPIN-STRUCTURED PCR ENHANCER FOR MICROFLUIDIC PLATFORMS

Ren Shen¹, Yanwei Jia¹, Pui-In Mak¹, and Rui P. Martins^{1,2}

1 University of Macau, CHINA and ² Universidade de Lisoba, PORTUGAL

M097.c MICROWELL ARRAY BASED NAZYME BIOASSAY FOR MUTANT & MULTIPLEXED TARGET DETECTION

Saba Safdar, Karen Ven, Julie van Lent, Jeroen Lammertyn, and Dragana Spasic KU Leuven, BELGIUM

T093.c AN ULTRASENSITIVE, SEMI-QUANTITATIVE MEASUREMENT OF HIV NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NRTI) WITH RT-RECOMBINASE POLYMERASE AMPLIFICATION (RT-RPA) FOR RAPID PREP ADHERENCE TESTING

Jane Y. Zhang, Ayokunle O. Olanrewaju, Andrew T. Bender, Yu Zhang, Paul K. Drain, and Jonathan D. Posner University of Washington, USA

Nucleic-Acid Analysis

DNA DIGESTION USING IMMOBILIZED DNASE TYPE I IN T094.c A MICROFLUIDIC CARTRIDGE

Jenny Graunitz^{1,2}, Sandra Kuhn³, Cornelia Stiehl², Martina Schneemann^{4,5}, Andreas Morschhauser⁴, Harald Peter5, Frank Bier1, and Joerg Nestler2

¹University of Potsdam, GERMANY, ²BiFlow Systems GmbH, GERMANY,

³Mittweida University of Applied Sciences, GERMANY,

⁴Fraunhofer Institute for Electronic Nano Systems ENAS, GERMANY and

⁵Fraunhofer Institute for Cell Therapy and Immunology, GERMANY

T095.c HIGH THROUGHPUT SAMPLE DISCRETIZATION. REAGENT INTEGRATION, AND CONTROLLED RELEASE FOR MULTIPLEXED LOOP-MEDIATED ISOTHERMAL AMPLIFICATION IN DISPOSABLE THERMOPLASTIC 2D MICROWELL ARRAYS

Supriya Padmanabhan, Imaly Nanayakkara, lan White, and Don L. DeVoe University of Maryland, USA

OPTICAL DNA MAPPING USING NANOCHANNELS T096.c FOR IDENTIFICATION OF PLASMIDS CARRYING CARBAPENEMASE BLANDM-1 GENE FROM PATIENTS ADMITTED TO A

VIETNAMESE HOSPITAL

Sriram KK1, Maud Nilsson2, Björn Berglund2, Linus Olson3, Hoang Bich Ngoc4, Tran Minh Dien4, Mattias Larsson3, Håkan Hanberger², Christian Giske³, and Fredrik Westerlund¹ ¹Chalmers University of Technology, SWEDEN, ²Linköping University, SWEDEN, 3 Karolinska Institute, SWEDEN, and 4 Vietnam National Children's Hospital, VIETNAM

W093.c A DUAL-HEATER DIGITAL MICROFLUIDIC SYSTEM FOR FAST POLYMERASE CHAIN REACTION WITH SLOPPY **TEMPERATURE CONTROL**

Liang Wan1, Tianlan Chen1, Haoran Li1, Cheng Dong1, Yanwei Jia1, Pui-In Mak1, and Rui P. Martins1,2 ¹University of Macau, CHINA and ²Universidade de Lisboa, PORTUGAL

W094.c BURIED MICROFLUIDIC CHANNELS WITH OBSERVATION WINDOW FOR A HEAT TRANSFER DETERMINATION BASED ON DNA **MELTING CURVE ANALYSIS**

Zdenka Fohlerova¹, Hanliang Zhu², Imrich Gablech¹, and Pavel Neuzil^{1,2} ¹Central European Institute of Technology, CZECH REPUBLIC and ²Northwestern Polytechnical University, CHINA

W095.c DNA OPTICAL MAPPING IN REAL TIME

Franziska M. Esmek¹, Marlin Therre², Mania Czech-Sioli², Nicole Fischer², Thomas Guenther³, Adam Grundhoff³, and Irene Fernandez-Cuesta1 ¹Universität Hamburg, GERMAN,

²Instityte for Medical Microbiology, GERMANY, and

3 Henrich-Pette-Institut, GERMANY

Nucleic-Acid Analysis

W096.c INTEGRATION OF ISOTHERMAL MOLECULAR AMPLIFICATION WITH CENTRIFUGAL MICROFLUIDIC PLATFORM AND NANOPARTICLE BASED OPTOMAGNETIC READOUT FOR DETECTION OF *E. coli*

Robert W. Baber $^{1},\,$ Marco Donolato $^{2},\,$ Mikkel F. Hansen $^{1},\,$ and Jeppe Fock 2

¹Technical University of Denmark, DENMARK and

W097.c POINT-OF-CARE NUCLEIC ACID SENSORS VIA PAPER-BASED OLIGONUCLEOTIDE-TEMPLATED REACTIONS

Robert B. Channon¹, Suraj Pavagada¹, Jason Y.H. Chang¹, Sung Hye Kim¹, David MacIntyre^{1,2}, Phillip R. Bennett^{1,2}, Vasso Terzidou^{1,3}, Danny O'Hare¹, and Sylvain Ladame¹

¹Imperial College London, UK, ²Queen Charlotte's Hospital, UK, and

c - Diagnostics, Drug Testing & Personalized Medicine

Pathogen Detection & Antibiotics

M098.c 3D PRINTED RASPBERRY PI MICROSCOPY FOR LOW COST MICROFLUIDIC BACTERIAL MOTILITY ANALYSIS

Tai The Diep and Alexander Daniel Edwards University of Reading, UK

M099.C A MICROFLUIDIC MODULE FOR INTEGRATED LYSIS AND GENETIC MATERIAL DETECTION OF GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA

Catarina R.F. Caneira¹, Sílvia Monteiro², Ricardo Santos²,

Virginia Chu¹, and João P. Conde¹.²

¹INESC-MN, PORTUGAL and ²Universidade de Lisboa, PORTUGAL

M100.c BACTERIAL IDENTIFICATION BY OPTICAL MAPPING OF GENOMIC DNA IN NANOFLUIDIC CHANNELS

My Nyblom¹, Vilhelm Müller¹, Anna Johhning^{1,2,3}, Marie Wrande⁴, Albertas Dvirnas⁵, Sriram KK¹, Christian G. Giske^{6,7}, Tobias Ambjörnsson⁵, Linus Sandegren⁴, Erik Kristiansson³, and Fredrik Westerlund¹ 1 Chalmers University of Technology, SWFDFN 2 Fraunhofer-Chalme

¹Chalmers University of Technology, SWEDEN, ²Fraunhofer-Chalmers Centre, SWEDEN, ³University of Gothenburg, SWEDEN, ⁴Uppsala University, SWEDEN, ⁵Lund University, SWEDEN, ⁶Karolinska Institute, SWEDEN, and ⁷Karolinska University Hospital, SWEDEN

M101.c FAST ANTIMICROBIAL SUSCEPTIBILITY TESTING OF *E. coli* BY OXYGEN CONSUMPTION MEASUREMENTS IN AN ISOTHERMAL MICRO-INCUBATOR PLATFORM

Yang Liu, Thomas Lehnert, Terry P.N. Baltus, and Martinus A.M. Gijs École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

M102.c LABEL-FREE BACTERIAL SMARTPHONE DETECTION IN MICRO CAPILLARY FILM ALLOWS RAPID TESTING OF THERAPEUTIC BACTERIOPHAGE SPECIFICITY

Sultan İlayda Dönmez, Sarah Needs, Mojgan Rabiey, Helen Osborn, and Alexander Edwards University of Reading, UK

²Blusense Diagnostics ApS, DENMARK

³Chelsea & Westminister Hospital, UK

Pathogen Detection & Antibiotics

M103.c MICROFLUIDICS COUPLED MASS SPECTROMETRY REVEALS METABOLOMIC VARIATIONS DURING MORPHOLOGICAL CHANGES OF BACTERIA UNDER THE IMPACT OF ANTIBIOTICS

Dongxue Zhang and Liang Qiao Fudan University, CHINA

M104.c RAPID SEPARATION AND DETECTION OF RARE FUNGI SPORES FROM WHOLE BLOOD BASED ON A DUAL-LAYER MICROPORE ARRAYED FILTRATION

Wenbo Zhou¹, Yaoping Liu¹, Shuangling Li², Meng Xiao³, Jie Gong⁴, Hang Li², and Wei Wang^{1,5}

¹Peking University, CHINA, ²Peking University First Hospital, CHINA, ³Peking Union Medical College Hospital, CHINA, ⁴Chinese Center for Disease Control and Prevention, CHINA, and ⁵National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

M105.c USE OF MINIATURIZED DEVICES AND ISOTHERMAL AMPLIFICATION FOR PATHOGEN DETECTION IN THE FIELD

Carlos Manzanas, Xiao Jiang, Julia C. Loeb, John A. Lednicky, and Z. Hugh Fan University of Florida. USA

T097.c A DROPLET MICROFLUIDICS PLATFORM FOR SCALABLE AND HIGH-THROUGHPUT ISOLATION OF ANTIBIOTIC-PRODUCING MICROBES

Pieter Berden^{1,2,3}, Camila D. Campos^{1,2}, Rodrigo S. Wiederkehr¹, Liesbet Lagae^{1,2}, Tim Stakenborg¹, Jan Michiels^{2,3}, and Maarten Fauvart^{1,2,3}

1 Imec, BELGIUM, 2KU Leuven, BELGIUM, and 3 VIB, BELGIUM

T098.c A MULTIPLEXED ASSAY SYSTEM FOR PATHOGEN DETECTION BASED ON ENCODED MAGNETIC MICROPARTICLES

Young Ki Hahn¹, Ji Hyun Kim², and Honggu Chun² ¹Kyungpook National University, KOREA and ²Korea University, KOREA

T099.C BACTERIAL PATHOGENS DETECTION AND ANTIMICROBIAL RESISTANCE TESTING USING PAPER-BASED DEVICES FOR URINARY TRACT INFECTIONS (UTIS)

Peijun J.W. He¹, Ioannis N. Katis¹, Anto J.U. Kumar¹, Catherine A. Bryant¹, Charles W. Keevil¹, Bhaskar K. Somani², Nitin Mahobia², Robert W. Eason¹, and Collin L. Sones¹ ¹University of Southampton, UK and ²University Hospital Southampton NHS Trust, UK

T100.c FISH AND CHIPS-IFAST MICROFLUIDIC DEVICE FOR E. coli 0157:H7 CAPTURE AND DETECTION VIA ON-CHIP FISH ASSAY

Pablo Rodriguez-Mateos¹, Celia F. Rodrigues², Nuno F. Azevedo², Carina Almeida³,4, Charlotte E. Dyer¹, Alex Iles¹, and Nicole Pamme¹¹*University of Hull, UK, ²University of Porto, PORTUGAL, ³National Institute for Agricultural and Veterinary Research, PORTUGAL, and* ⁴*Biomode SA, PORTUGAL*

Pathogen Detection & Antibiotics

T101.C MICRO-SCALE IMMUNOMAGNETIC BACTERIAL ENRICHMENT COUPLED TO NANOPLASMONIC SENSING FOR RAPID DETECTION OF PATHOGENS IN WHOLE BLOOD

Alison Burklund¹, Amogha Tadimety¹, and John X.J. Zhang^{1,2}

¹ Dartmouth College, USA and ² Darthmouth-Hitchcock

Medical Center, USA

T102.c MOLECULAR DIAGNOSIS OF INFECTIOUS DISEASES FOR POINT-OF-CARE USING DNA HYDROGEL BASED REPID KIT

Hwang-soo Kim, Ho Yoon Lee, Chan Hee Park, Hynsung Kim, Young Joon Kim, Jin A. Choi, and Sehyun Shin Korea University, KOREA

T103.c RATIOMETRIC MULTIPLEXED DIGITAL PCR FOR BACTERIAL IDENTIFICATION AND PHENOTYPIC AST OF

POLYMICROBIAL SAMPLES

Fan-En Chen, Alexander Y. Trick, Liben Chen, Joon Soo Park, and Jeff Tza-Huei Wang Johns Hopkins University, USA

W098.c A MICROFLUIDIC SYSTEM INTEGRATING MEMBRANE FILTRATION AND SURFACE-ENHANCED RAMAN SCATTERING FOR RAPID ANTIBIOTIC SUSCEPTIBILITY TEST

Kai-Wei Chang and Nien-Tsu Huang National Taiwan University, TAIWAN

W099.c A SELF-CONTAINED INTEGRATED NUCLEIC ACID ANALYSIS CASSETTE FOR MULTIPLEXED BACTERIA DETECTION

Nan Li¹, Minjie Shen¹, and Youchun Xu^{1,2}

¹Tsinghua University, CHINA and ²National Engineering
Research Center for Beijing Biochip Technology, CHINA

W100.c DISCRIMINATING DRUG-RESISTANT BACTERIA USING AI ANALYSIS ON FINE CURRENT CHANGES FROM INNER ION LEAKAGES

Aomi Yoshikawa¹, Takao Yasui¹, Taisuke Shimada¹, Seiji Yamasaki², Kunihiko Nishino², Takeshi Yanagida^{2,3}, Kazuki Nagashima³, Takashi Washio², Tomoji Kawai², and Yoshinobu Baba^{1,4}

¹ Nagoya University, JAPAN, ² Osaka University, JAPAN,

³ Kyushu University, JAPAN, and ⁴ National Institute of Advanced Industrial Science and Technology, JAPAN

W101.c FULL INTEGRATION OF SAMPLE PREPARATION AND DNA ANALYSIS FOR FAST MULTIPLEX FIELD-IDENTIFICATION OF BACTERIA

Remco den Dulk¹, Camille Echampard¹, Perrine Viargues¹, Fabienne Gas², Florent Decugis², Mélissa Baqué¹, Anne-Gaëlle Bourdat¹, Manuel Alessio¹, Sandrine Alais³, Jehanne Oudot³, Olivier Riffard³, Cédric Pasquier³, Gregory Wenisch³, and Jean-Maxime Roux¹ ¹CEA-Leti, FRANCE, ²CEA-DRF, FRANCE, and ³SDMIS, FRANCE

Pathogen Detection & Antibiotics

W102.c MULTIPLEXED OPTICAL DNA MAPPING TO IDENTIFY PLASMIDS AND THEIR RESISTANCE GENES IN FECAL SAMPLES

Sriram KK¹, Yii-Lih Lin¹, Tsegaye Sewunet².³, Shoeib Nematzadeh³, Christian G. Giske³.⁴, and Fredrik Westerlund¹

¹Chalmers University of Technology, SWEDEN, ²Jimma University, ETHIOPIA, ³Karolinska Institutet, SWEDEN, and ⁴Karolinska University Hospital, SWEDEN

W103.c PALM-SIZED MAGNETOFLUIDIC PLATFORM FOR BACTERIAL IDENTFICATION AND ANTIMICROBIAL SUSCEPTIBILITY TESTING OF INFECTED WOUNDS

Pei-Wei Lee, Liben Chen, Alexander Y. Trick, Pornpat Athamanolap, Fan-En Chen, and Tza-Huei Wang Johns Hopkins University, USA

W104.c SMARTPHONE-BASED DETECTION OF VIBRIO CHOLERAE IN ENVIRONMENTAL WATER SAMPLES USING PARTICLE DIFFUSOMETRY

Taylor J. Moehling¹, Dong Hoon Lee¹, Katherine N. Clayton², Steven T. Wereley¹, Tamara L. Kinzer-Ursem¹, and Jacqueline C. Linnes¹ ¹Purdue University. USA and ²OmniVis LLC. USA

c - Diagnostics, Drug Testing & Personalized Medicine

Personalized Medicine

M106.c DEVELOPMENT OF A MICROFLUIDIC PLATFORM FOR TARGETED PHAGE SELECTION: IN PURSUIT OF PERSONALIZED COLORECTAL CANCER TREATMENTS

Eduardo J.S. Brás, Pedro G.M. Condelipes, Pedro M. Fontes, Ricardo F. Serrão, Vanda Marques, Marta B. Afonso, Cecília M.P. Rodrigues, Virginia Chu, João Gonçalves, and João Pedro Conde Universidade de Lisboa. PORTUGAL

T104.c DROPLET-BASED SINGLE EXTRACELLULAR VESICLE SEQUENCING FOR RARE IMMUNE SUBTYPE DISCOVERY

Jina Ko¹, Yongcheng Wang², Jeremy Gungabeesoon¹, Mikael Pittet¹, David Weitz², and Ralph Weissleder¹

1 Massachusetts General Hospital, USA and 2 Harvard University, USA

T105.c QUAD MICRORAFT ARRAYS AS A PLATFORM FOR GENERATING AND SELECTING HUMAN INDUCED PLURIPOTENT STEM CELLS FROM PERIPHERAL BLOOD

Nicole M. Smiddy¹, Adriana S. Beltran², and Nancy L. Allbritton^{1,3}
¹ University of North Carolina, USA, ²University of North Carolina School of Medicine, USA, and ³North Carolina State University, USA

W105.c DRUG METABOLISM-IN-A-DROPLET: A DIGITAL MICROFLUIDIC APPROACH TOWARD PRECISION MEDICINE

Gowtham Sathyanarayanan, Markus Haapala, and Tiina Sikanen University of Helsinki, FINLAND

c - Diagnostics, Drug Testing & Personalized Medicine

Protein Analysis & Characterization (e.g., Proteomics)

M107.c TRANSPEPTIDASE-MEDIATED IN-SITU COVALENT IMMOBILIZATION OF CELL-FREE SYNTHESIZED ENZYME FOR ON-CHIP DIRECTED EVOLUTION

Shingo Ueno ^1,2 , Yui Shirakata ^1 , Mika Shioya ^1 , Shusuke Sato ^1,2 ,

Shoichi Tsuchiya¹, and Takanori Ichiki^{1,2}

¹Innovation Center of NanoMedicine, JAPAN and

²University of Tokyo, JAPAN

T106.c INTEGRATED AND AUTOMATED MICROFLUIDIC PORTABLE INSTRUMENTATION FOR WHOLE BLOOD SAMPLE PREPARATION IN PROTEOMICS ANALYSIS

Myriam Cubizolles, Remco Den Dulk, Benoit Gilquin, Frédéric Revol-Cavalier, Manuel Alessio, Charles-Elie Goujon, Camille Echampard, Gorka Arrizabalaga, Yohann Couté, Annie Adrait, Mathilde Louwagie, Patricia Laurent, Fabrice Navarro, Marie-Line Cosnier, and Virginie Brun University Grenolble Alps, FRANCE

W106.c DRIED BLOOD SPOT RECOVERY: A MICROFLUIDIC TECHNIQUE FOR FAST ELUTION WITHOUT DILUTION

Etienne Coz¹, Pierre Garneret¹, Didier Chevenne², Jean-François Benoist², Fabrice Monti¹, and Patrick Tabeling¹ 1 ESPCI-Paris, FRANCE and 2 Hospital Robert-Debré, FRANCE

W107.c THE INFLUENCE OF SHEAR ON PROTEIN CRYSTALLIZATION UNDER CONSTANT SHEAR CONDITIONS

Sander Stroobants¹, Marzena Krzek¹, Pierre Gelin¹, Iwona Ziemecka¹, James F. Lutsko², Wim De Malsche¹, and Dominique Maes¹

1 Vrije Universiteit Brussel, BELGIUM and

²Université Libre de Bruxelles, BELGIUM

c - Diagnostics, Drug Testing & Personalized Medicine

Regenerative Medicine & Tissue Engineering

M108.c HIERARCHICAL ASSEMBLY OF COLLAGEN MOLECULES INTO TISSUE-ENGINEERED ARTERIAL CONSTRUCTS

Shashi Malladi¹, David M. Nieves², Carloyn Haller^{2,3}, Elliot L. Chaikof^{2,3}, and Axel Guenther¹

¹University of Toronto, CANADA, ²Harvard University, USA, and

³Beth Israel Deaconess Medical Center, USA

T107.c CELL-ENCAPSULATING CHITOSAN-COLLAGEN HYBRID HYDROGEL CONDUIT FOR PERIPHERAL NERVE REGENERATION

Shun Itai¹, Karin Suzuki¹, Yuta Kurashina², Hiroo Kimura¹, Tsuyoshi Amemiya¹, Kazuki Sato¹, Masaya Nakamura¹, and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Tokyo Institute of Technology, JAPAN

Regenerative Medicine & Tissue Engineering

T108.c SYNERGISTIC ELECTRO-MECHANICAL TRANSFECTION FOR

IN-VIVO REGENERATIVE THERAPY USING ELECTRICALLY-INDUCED MICROBUBBLES

Akiho Hirao¹, Keiko Miwa¹, Yasuhiro Moriizumi², and Yoko Yamanishi¹ Kyusyu University, JAPAN and ²BEX Co., Ltd., JAPAN

W108.c ENGINEERED ADAPTIVE IMMUNE RESPONSE BY MICROFLUIDICALLY FABRICATED SCAFFOLD IMPARTS REGENERATIVE WOUND HEALING

Maani M. Archang¹, Donald R. Griffin², Westbrook M. Weaver¹, Jason S. Weinstein³, Amber Ruccia⁴, An Chieh Feng⁴, Elias Sideris¹, Jaekyung Koh¹, Dino Di Carlo¹, Tatiana Segura^{1,4}, and Philip O. Scumpia^{1,5}

¹University of California, Los Angeles, USA, ²University of Virginia, USA, ³Rutgers –New Jersey Medical School, USA, ⁴Duke University, USA, and

⁵VA Greater Los Angeles Healthcare System, USA

W109.c VERTICAL NANOSTRUCTURED FLEXIBLE ANTI-PATHOGENIC SCAFFOLDS FOR STEM CELL AND TISSUE ENGINEERING

Sunho Park¹, Hyun-Ha Park², Kahyun Sun², Minho Seong², Sujin Kim¹, Hoon Eui Jeong², and Jangho Kim¹

¹Chonnam National University, KOREA and

²Ulsan National Institute of Science and Technology (UNIST), KOREA

c - Diagnostics, Drug Testing & Personalized Medicine

Others

M109.c A CONVERSATIONAL ROBOTIC LAB ASSISTANT FOR AUTOMATED MICROFLUIDIC 3D MICROTISSUE PRODUCTION

Krzysztof Langer¹, Sandra Jernström², Piia Mikkonen3, Päivi Östling², Brinton Seashore-Ludlow², and Haakan N. Joensson¹

¹KTH Royal Institute of Technology, SWEDEN, ²Karolinska Institutet, SWEDEN, and ³University of Helsinki, FINLAND

M110.c A RAPID ENZYMATIC ASSAY FOR NEAR-PATIENT MEASUREMENT OF ADHERENCE TO HIV PRE-EXPOSURE PROPHYLAXIS Ayokunle O. Olanrewaju¹, Benjamin Sullivan¹, Jane Y. Zhang¹,

Andrew T. Bender¹, Tiffany J. Lo¹, Derin Sevenler²,
Marta Fernandez-Suarez³, Paul K. Drain¹,
and Jonathan D. Posner²

1 University of Washington, USA, ² Harvard Medical School, USA, and
3 Independent Contractor, USA

T109.c REAL-TIME MEASUREMENT OF THE PHYSICAL PROPERTIES OF DNA-LIGAND COMPLEXES

Deniz Pekin¹, Grégoire Perret², Momoko Kumemura³, Laurent Jalabert², Samuel Meignan⁴, Hiroyuki Fujita², Dominique Collard², and Mehmet C. Tarhan⁵ ¹Inserm, FRANCE, ²LIMMS/CNRS-IIS, FRANCE, ³Kyushu Institute of Technology, JAPAN, ⁴Centre Oscar Lambret, FRANCE, and ⁵University Lille, FRANCE

Others

T110.c SALIVARY MICRORNA CORECTION AND ANALYSIS USING NANOCELLULOSE FOR DOMICILIARY CANCER DIAGNOSIS

Naoya Misukami¹, Takao Yasui¹, Hironao Koga², and Yoshinobu Baba¹.³
¹ Nagoya University, JAPAN, ² Osaka University, JAPAN, and
³ National Institute of Advanced Industrial Science and Technology
(AIST), JAPAN

W110.c RAPID AND PORTABLE PRESUMPTIVE TESTING OF NEW PSYCHOACTIVE SUBSTANCES

Lauren F. McNeill, Marios Savvos, Oliver B. Sutcliffe, David P. Megson, Patricia E. Linton, and Kirsty J. Shaw Manchester Metropolitan University, UK

d - Fundamentals in Microfluidics and Nanofluidics

Acousto- and Magnetofluidics

M111.d LABEL-FREE SURFACE ACOUSTIC WAVE-BASED EMBEDDED FLOW SENSOR

Aurore Quelennec, Jason J. Gorman, and Darwin R. Reyes National Institute of Standards and Technology (NIST), USA

T111.d NEW UNDERSTANDING OF ACOUSTOFLUIDIC DROP DISPENSING FOR DIGITAL MICROFLUIDICS USING SURFACE ACOUSTIC WAVES

Elijah Nazarzadeh, Christian Witte, Julien Reboud, and Jonathan M. Cooper *University of Glasgow, UK*

W111.d HIGH THROUGHPUT CONTINUOUS CELL SECRETOME SEPARATION INSIDE MICROSCALE DROPLETS BY MEANS OF ACOUSTOPHORESIS

Michael Gerlt, Dominik Haidas, Alexandre Ratschat, Philipp Suter, Petra S. Dittrich, and Jürg Dual ETH Zürich, SWITZERLAND

W112.d SURFACE ACOUSTIC WAVES PLATFORM FOR TARGETED DELIVERY OF LIPOSOMAL SIRNA AND DNA PLASMID

Xi King¹, Elijah Nazarzadeh¹, Manlio Tassieri¹, Julien Reboud¹, Jenny K.W. Lam², and Jonathan M. Cooper¹ ¹University of Glasgow, UK and ²University of Hong Kong, CHINA

d - Fundamentals in Microfluidics and Nanofluidics

Centrifugal Microfluidics

M112.d AN AUTOMATED CENTRIFUGAL MICROFLUIDIC SYSTEM INTEGRATED WITH ETALON SENSOR FILMS FOR RAPID IMAGE ANALYSIS BASED DETECTION OF HORMONES IN MILK

Yuting Hou¹, Rohit Mishra², Menglian Wei¹, Nicholas Balasuriya¹, Jens Ducrée², Michael J. Serpe¹, and Jed Harrison¹

1 University of Alberta, CANADA and ² Dublin City University, IRELAND

M113.d SEPARATION AND CHROMOGENIC DETECTION OF MIXED ILLICIT DRUG SAMPLES FOR POINT-OF-INTERDICTION TESTING

Killian C. O'Connell, M. Shane Woolf, and James P. Landers *University of Virginia, USA*

Centrifugal Microfluidics

M114.d PHASE-SEPARATED CORE-SHELL HYDROGEL MICROBEADS FROM HOMOGENEOUS MIXED POLYMER SOLUTION BY SIMULTANEOUS GELATION

Yuta Kurashina^{1,2}, Mio Tsuchiya¹, Keitaro Kasahara¹, and Hiroaki Onoe¹

**Reio University, JAPAN and **Tokyo Institute of Technology, JAPAN

T112.d ARTIFICIAL GUT-ON-A-DISC PLATFORM TO EVALUATE PH SENSITIVE COATINGS OF ORAL DRUG DELIVERY DEVICES

Sriram Thoppe Rajendran^{1,2}, Khorshid Kamguyan¹, David Kinahan², En-Te Hwu¹, Line Hagner Nielsen¹, Kinga Zór¹, and Anja Boisen¹

¹Technical University of Denmark, DENMARK and

²Dublin City University, IRELAND

T113.d ON-DISC DROPLET FUSION FOR CELL TRANSFECTION

Yuye Wang, Shiyue Liu, Siu-kai Kong, and Ho-Pui Ho Chinese University of Hong Kong, HONG KONG

T114.d REVERSIBLE VALVING SOLUTIONS FOR CENTRIFUGAL PLATFORMS WHILE SPINNING

Saraí M. Torres Delgado¹, Moritz Huber¹, Bahman Moradi², Jan G. Korvink¹, Christof Megnin², and Dario Mager¹ ¹Karlsruhe Institute of Technology, GERMANY and ²MEMETIS GmbH, GERMANY

W113.d AUTONOMOUS MULTIPLEXED CENTRIFUGAL DEVICE TO EXECUTE FULLY AUTOMATED SANDWICH ELISA WITH MINIMUM REAGENTS LOADING OPERATION

Shunya Okamoto^{1,2} and Yoshiaki Ukita¹
¹University of Yamanashi, JAPAN and ²JSPS Research Fellow, JAPAN

W114.d HIGH THROUGHPUT GENERATION OF CALCIUM-ALGINATE MICRO-PARTICLES USING CENTRIFUGAL FORCE-BASED DEVICE FOR CELLS ENCAPSULATION

Thi Huong Le¹, Van Thuy Duong¹, Huu Lam Phan¹, Chanh Trung Nguyen¹, Hang Phuong Nguyen¹, Hyewon Son¹, Seok Oh¹, HyoSoek Lee¹, Suwon Lee¹, Changho Hwang², and Kyo-in Koo¹ ¹University of Ulsan, KOREA and ²University of Ulsan College of Medicine, KOREA

W115.d THE CENTRIFUGO-PNEUMATIC LAB-ON-A-DISK PLATFORM: TOWARDS ROBUST FLOW CONTROL FOR LARGER-SCALE FUNCTIONAL INTEGRATION

Lars H. von Deyn and Jens Ducrée Dublin City University, IRELAND

d - Fundamentals in Microfluidics and Nanofluidics

Digital Microfluidics

M115.d AN ELECTRONICALLY-CONTROLLED DIGITAL FERROFLUIDIC ARCHITECTURE FOR SCALABLE AND ADDRESSABLE BIOANALYTICAL OPERATIONS

Wenzhuo Yu, Yilian Wang, Haisong Lin, Nathan Chen, Xu He, Kevin Sun, Dino Di Carlo, and Sam Emaminejad University of California, Los Angeles, USA

M116.d DROPLET EVAPORATION PROFILES IN DIAMAGNETIC LEVITATION

Vincent Haguet¹, Sergey Semenov², Christian Jeandey¹, and Mickaël Antoni²

¹CEA Grenoble, FRANCE and ²Aix-Marseille Université, FRANCE

M117.d POINT-OF-CARE DIAGNOSIS OF RESPIRATORY SYNCYTIAL VIRUS BY DIGITAL NANOBUBBLE DETECTION

Yaning Liu¹, Haihang Ye¹, Ruth Levitz¹, HoangDinh Huynh¹, Jeffrey Kahn¹, and Zhenpeng Qin^{1,2} ¹University of Texas, Dallas, USA and ²University of Texas Southwestern Medical Center, USA

T115.d PATHWAY ENGINEERING USING RAPID-PROTOTYPE DIGITAL MICROFLUIDICS

James M. Perry, Guy Soffer, Ehsan Moazami, and Steve C.C. Shih Concordia University, CANADA

T116.d IMPROVED DYNAMICS FOR DROPLET ACTUATION BY STRATEGICALLY USING TRIANGULAR COPLANAR ELECTRODES IN DIGITAL MICROFLUIDIC SYSTEM

Mainak Basu, Soumen Das, and Sunando DasGupta Indian Institute of Technology Kharagpur, INDIA

T117.d ULTRA-LOW-FREQUENCY INDUCED TINY DROPLET TRANSPORTATION WITH SMALL DROPLET-TO-ELECTRODE AREA RATIO IN DIGITAL MICROFLUIDIC PLATFORMS

Mingzhong Li¹, Man-Kay Law¹, Pui-In Mak¹, and Rui P. Martins^{1,2}

1 University of Macau, CHINA and ² Universidade de Lisboa, Portugal

W116.d DIELECTROPHORETIC TRAPPING OF NON-STATIONARY FLOATING LIQUID MARBLES

Jing Jin, Chin H. Ooi, Kamalalayam R. Sreejith, Dzung V. Dao, and Nam-Trung Nguyen Griffith University, AUSTRALIA

W117.d INTEGRATED MAGNETOFLUIDIC NUCLEIC ACID PURIFICATION WITH DIGITAL PCR AND HIGH-RESOLUTION MELT FOR BACTERIAL IDENTIFICATION

David E. Gaddes, Pornpat Athamanolap, Alexander Y. Tric, Christine M. O'Keefe, Fan-Eh Chen, and Tza-Huei Wang Johns Hopkins University, USA

d - Fundamentals in Microfluidics and Nanofluidics

Droplet Microfluidics

M118.d AUTOMATED DROPLET SAMPLING OF ENDOCRINE TISSUE WITH DOWNSTREAM MERGERS FOR COMBINATORIAL MIX-AND-READ ASSAYS

Christopher J. Easley¹, Nan Shi¹, and Juan Hu²

¹ Auburn University, USA and ² Scripps Research, USA

M119.d BUBBLE BREAKUP IN AN EXPANSION MEDIATED MICROFLUIDIC CHANNEL

Alinaghi Salari 1,2 , Jiang Xu 1,2 , Michael C. Kolios 1,2 , and Scott Tsai 1,2

¹Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and ²Ryerson University, CANADA

M120.d DEEP LEARNING GUIDED IMAGE-BASED DROPLET SORTING FOR BIOLOGICAL SCREENINGS

Vasileios Anagnostidis¹, Benjamin Sherlock¹, Jeremy Metz¹, Philip Mair², Florian Hollfelder², and Fabrice Gielen¹ ¹University of Exeter, UK and ²University of Cambridge, UK

M121.d FEMTOLITER-DROPLET SHOOTING BY MICRO/NANO FLUIDICS FOR DIGITAL MASS SPECTROMETRY

Yuto Takagi, Yutaka Kazoe, and Takehiko Kitamori University of Tokyo, JAPAN

M122.d LABEL-FREE DROPLET DETECTION THROUGH 3D ELECTRODE-BASED IMPEDANCE SPECTROSCOPY

Hyun Soo Kim¹, Sunghyun Cho¹, Hyesoo Park¹, Kang-Ho Lee¹, Ohwon Kwon¹, Younghak Cho², and Jaewon Park³

¹ Korea Institute of Machinery and Materials (KIMM), KOREA,

² Sout National University of Coinnes and Technology (COETA).

²Seoul National University of Science and Technology, KOREA, and ³Southern University of Science and Technology, KOREA

counterm conversity of colonics and reconnected, non-

M123.d MICRO PERISTALTIC PUMP SYSTEM FOR THE GENERATION OF ARBITRARY DROPLET SEQUENCE AND MULTIPLE-STEP BIOCHEMICAL ASSAYS

Wahida Bhuiyan, Gareth Evans, and Xize Niu University of Southampton, UK

M124.d NON-NEWTONIAN, HIGH VISCOSITY POLYMER BLENDS WITHIN DROPLET MICROFLUIDIC DEVICES

Polly Sanders, Solweig Chartier, Alexander Iles, Jia Min Chin, and Nicole Pamme University of Hull, UK

M125.d PARALLEL BACTERIAL ESTERASE ASSAY IN TRAPPED 35 nL-DROPLETS USING pL-EMULSION TRANSPORT

Charmi Chande¹, Jialan Cao¹, Thomas Henkel², Marc Kielpinskie², J. Michael Köhler¹, and G. Alexander Groß¹

¹Ilmenau University of Technology, GERMANY and ²Leibnitz Institute for Photonic Technology, GERMANY

Droplet Microfluidics

M126.d SELECTIVE PARTITIONING OF MICRODROPLETS USING HORIZONTAL MICROVALVES

Mohammad Reza Raveshi¹, Sagar N. Agnihotri², Muhsincan Sesen¹, Rajneesh Bhardwaj², and Adrian Neild¹

¹Monash University, AUSTRALIA and

²Indian Institute of Technology, Bombay, INDIA

M127.d SIMULTANEOUS MICRODROPLETS GENERSTION BY TAIL BREAKUP INDUCED WITH MULTI-BRANCH CHANNEL

Satsuki Kajiya¹, Dong Hyun Yoon¹, Yoshito Nozaki¹, Taisuke Isano², Hitoshi Yamagata², Hiroyuki Fujita², Tetsushi Sekiguchi¹, and Shuichi Shoji¹

¹Waseda University, JAPAN and ²Canon Medical Systems Corp., JAPAN

M128.d TRYPANOFLUIDICS: VARIABILITY OF ENZYMATIC RESPONSE IN POPULATIONS OF TRYPANOSOMES

Simone H. Oldenburg¹, Deniz Pekin¹, Lionel Buisson¹, Thomas Beneyton¹, Jean-Christophe Baret^{1,2}, and Loïc Rivière¹ ¹Université de Bordeaux, FRANCE and

²Institut Universitaire de France, FRANCE

T118.d BIOCOMPATIBLE POLYELECTROLYTE MICROCAPSULES GENERATED WITH MAGNETIC WATER-IN-WATER DROPLET MICROFLUIDICS

Maryam Navi^{1,2,3}, Jennifer Kieda^{1,2,3}, Niki Abbasi^{1,2,3}, and Scott Tsai^{1,2,3}
¹ Ryerson University, CANADA, ² St. Michael's Hospital, CANADA, and
³ Institute for Biomedical Engineering Science, and
Technology (iBEST), CANADA

T119.d CONTINUOUS FLOW CELL-CELL INTERACTION SCREENING VIA A SEQUENTAL INJECTOR

Weikang Nicholas Lin¹, Shih-Chung Wei², Matthew Zirui Tay³, Lu Ri⁴, and Chia-Hung Chen¹.²

¹National University of Singapore, SINGAPORE, ²Institute for Health Innovation & Technology (iHealthtech), SINGAPORE, ³Singapore Immunology Network (SIgN), SINGAPORE, and ⁴NUS Graduate School for Integrated Sciences and Engineering, SINGAPORE

T120.d DROP-QPCR: A DROPLET MICROFLUIDIC PLATFORM FOR FAST AND CONTINUOUS-FLOW OPCR ANALYSIS

Ismail Hajji¹, Mathilde Richerd¹, Simon Dumas¹, Charles Cavaniol¹, Lauriane Geremie¹, Marco Serra¹, Renaud Renault¹, Ivan Ferrante¹, Jean-Louis Viovy¹, Stéphanie Descroix¹, and Davide Ferraro^{1,2}

¹Institut Curie, FRANCE and ²Università di Padova, ITALY

T121.d HIGH THROUGHPUT SCREENING OF PLASTIC-DEGRADING MICROBES USING DROPLET MICROFLUIDICS

Yuxin Qiao, Dongwei Chen, Haiyan Yu and Wenbin Du Chinese Academy of Sciences, CHINA

Droplet Microfluidics

T122.d MASSIVELY-PARALLELIZED PRODUCTION OF FEMTOLITER DROPLETS AND ITS APPLICATION TO SELF-ASSEMBLED NANOPARTICLE CLUSTERS FOR NOVEL METAMATERIALS

Corentin B.M. Tregouet¹, Chris L. Kennedy², Ramakrishna Kotni², Sofie Kölling³, Johan G. Bomer³, Jasper J.A. Lozeman³, Detlef Lohse³, Albert van den Berg³, Alfons van Blaaderen², and Mathieu Odijk³ ¹ *Université Rennes 1, FRANCE, ² Utrecht University, THE NETHERLANDS, and* ³ *University of Twente, THE NETHERLANDS*

T123.d MICRONEEDLE-ASSISTED MICROFLUIDIC FLOW FOCUSING PLATFORM TO GENERTE WATER-IN-WATER MICRODROPLETS IN A HIGH-THROUGHPUT MANNER

Morteza Jeyhani^{1,2,3}, Vaskar Gnywali^{1,2,3}, Niki Abbasi^{1,2,3}, Dae Kun Hwang^{1,2,3}, and Scott S.H. Tsai^{1,2,3}
¹Ryerson University, CANADA, ²St. Michael's Hospital, CANADA, and ³Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA

T124.d ON-CHIP SAMPLE AUTOMATED DISCRETIZATION, SELECTIVE RETRIEVAL AND CONTROLLABLE METERING UTILIZING MEMBRANE INTEGRATED TRAPS FOR SINGLE-CELL ENCAPSULATION AND SORTING

Hesam Babahosseini^{1,2}, Tom Misteli¹, and Don L. DeVoe²
¹National Institutes of Health (NIH), USA and
²University of Maryland, USA

T125.d ON-DEMAND DROPLET GENERATOR FOR EXTRACTION OF ELECTROKINETICALLY FOCUSED ANALYTES

Vasileios A. Papadimitriou, Stella A. Kruit, Loes I. Segerink, and Jan C.T. Eijkel University of Twente, THE NETHERLANDS

T126.d SEQUENTIAL FORMATION OF DAUGHTER DROPLETS BY BREAKUP OF MICRODROPLETS INTO BYPASS CHANNEL

Shohei Hattori¹, Dong Hyun Yoon¹, Yoshito Nozaki¹, Taisuke Isano², Hitoshi Yamagata², Hiroyuki Fujita², Tetsushi Sekiguchi¹, and Shuichi Shoji¹

¹Waseda University, JAPAN and

²Canon Medical Systems Corp., JAPAN

T127.d SUPERPARAMAGNETIC NANOPARTICLE ENCAPSULATION VIA DROPLET-BASED MICROFLUIDICS FOR TARGETED DRUG DELIVERY SYSTEM

Sakon Rahong¹, Ratchanont Sukthai¹, Narin Paiboon², Kunat Suktham², Annop Klamchuen², and Suvimol Surassmo² ¹King Mongkut's Institute of Technology Ladkrabang, THAILAND and ²National Nanotechnology Center (NANOTEC), THAILAND

T128.d WATER EVAPORATION BASED SELF-AQUEOUS TWO-PHASE SYSTEM DROPLET FORMATION

Byeong-Ui Moon, Lidija Malic, Keith Morton, Abdelrahman Elmanzalawy, and Teodor Veres National Research Council Canada, CANADA

Droplet Microfluidics

W118.d A PORTABLE DROPLET SORTING PLATFORM WITH INTEGRATED THERMOCAPILLARY SORTING AND CAPACITANCE DETECTING

Yigang Shen^{1,2}, Yaxiaer Yaliku^{1,3}, Yusufu Aishan^{1,2}, and Yo Tanaka^{1,2}

¹RIKEN, JAPAN, ²Osaka University, JAPAN, and

³Nara Institute of Science and Technology, JAPAN

W119.d CLIMBING DROPLETS DRIVEN BY MECHANOWETTING

Ye Wang 1,2 , Edwin de Jong 3 , Patrick R. Onck 3 , and Jaap M.J. den Toonder 1,2

¹Eindhoven University of Technology, THE NETHERLANDS,

²Institute for Complex Molecular Systems, THE NETHERLANDS, and

³University of Groningen, THE NETHERLANDS

W120.d CONTROLLED RELEASE OF LIPOSOMAL CARGO IN DOUBLE EMULSIONS TO INDUCE GENE EXPRESSION IN BACTERIA

Ariane Stucki, Petra Jusková, Nicola Nuti, Steven Schmitt, Lucas Armbrecht, and Petra S. Dittrich ETH Zürich, SWITZERLAND

W121.d FABRICATION AND EVALUATION OF ATTOLITER DROPLETS

Risa Takane¹, Hiroto Kawagishi¹, Yasunori Matsui¹, Hiroshi Ikeda¹, and Yan Xu^{1,2}

¹Osaka Prefecture University, JAPAN and

² Japan Science and Technology Agency (JST), JAPAN

W122.d IMPROVING DNA LIBRARY PREPARATION FOR NEXT GENERATION SEQUENCING THANKS TO AN INNOVATIVE DROPLET MICROFLUIDIC DEVICE

Davide Ferraro^{1,2}, Marco Serra¹, Thanh Duc Mai^{1,3}, Almut Eisele¹, Leïla Périé¹, Jean-Louis Viovy¹, and Stephanie Descroix¹ ¹Institut Curie, FRANCE, ²University of Padova, ITALY, and ³Institut Galien de Paris-Sud, FRANCE

W123.d MICRODROPLET ARRAY CONCENTRATION WITH SIZE-TRIGGERED RELEASE SYSTEM

Piangrawee Santivongskul¹, Mao Fukuyama^{1,2}, and Akihide Hibara¹

¹Tohoku University, JAPAN and

² Japan Science and Technology Agency (JST), JAPAN

W124.d MULTIPLEXING ANTIBIOTIC SCREENING IN DROPLET MICROFLUIDICS USING AN OPTOFLUIDIC PLATFORM

Sundar Hengoju^{1,2}, Lisa Mahler¹, Oksana Shvydkiv¹, Miguel Tovar¹, Miriam Rosenbaum^{1,2}, and Martin Roth¹

¹Hans Knöll Institute, GERMANY and

² Friedrich Schiller University, GERMANY

W125.d PHOSPHOLIPID EXTRACTION AND PHASE SEPARATION USING DROPLET MICROFLUIDICS

David J. Rowe, Daniel J. Health, Anthony D. Postle, James S. Wilkinson, and Goran Z. Mashanovich University of Southampton, UK

Droplet Microfluidics

W126.d RAYDROP, AN UNIVERSAL DROPLET GENERATOR BASED ON A NON EMBEDDED "CO-FLOW-FOCUSING"

Adrien Dewandre, Javier Rivero-Rodriguez, Youen Vitry, Benjamin Sobac, and Benoit Scheid Université libre de Bruxelles, BELGIUM

W127.d SILICON CHAMBERS FOR ENHANCED-IMAGING OF DROPLET ARRAYS IN A GRADED TEMPERATURE FIELD

Nicolas Lobato-Dauzier^{1,2}, Robin Deteix^{1,2}, Matthieu Denoual^{2,3}, Soo Hyeon Kim¹, Hiroshi Toshiyoshi^{1,2}, Hiroyuki Fujita⁴, Teruo Fujii^{1,2}, and Anthony J. Genot² ¹University of Tokyo, JAPAN, ²LIMMS-IIS/CNRS, FRANCE,

³ Greyc – ENSICAEN/CNRS, FRANCE, and ⁴ Tokyo City University, JAPAN

W128.d TOWARDS THE DEVELOPMENT OF A DROPLET MICRO-REACTOR FOR INDUSTRIAL RELEVANT SCREENING IN BIOTECHNOLOGY

Kartik Totlani, Thorben de Riesse, Maxime Bisschops, Walter van Gulik, Michiel Kreutzer, and Volkert van Steijn Delft University of Technology, THE NETHERLANDS

d - Fundamentals in Microfluidics and Nanofluidics

Electrokinetic Phenomena

M129.d TUNING DETERMINISTIC LATERAL DISPLACEMENT SEPARATION WITH AC ELECTROKINETICS

Victor Calero¹, Pablo Garcia-Sanchez², Antonio Ramos², and Hywel Morgan¹

1 University of Southampton, UK and 2 Universidad de Sevilla, SPAIN

omvoronty or obtainampton, on and omvorondad do bovina, or vine

M130.d ION CONCENTRATION POLARISATION FOR PARTICLE MESOPOROSITY DIFFERENTIATION

Vasileios A. Papadimitriou, Miguel Solsona, Wouter Olthuis, Albert van den Berg, and Jan C.T. Eijkel University of Twente, THE NETHERLANDS

T129.d OBSERVATION OF MEMBRANE CHANGES AND VIABILITY OF CELLS IN A PARALLEL ELECTROROTATION PLATFORM

Kevin Keim, Mohamed Z. Rashed, and Carlotta Guiducci École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W129.d DIELECTROPHORETIC ANALYSIS: A TOOL FOR STUDYING THE IMPACT OF ORGANIC SOLVENTS ON WHOLE-CELL BIOCATALYSTS

Miriam S. Epping, Armin Grundmann, Harald Groeger, and Martina Viefhues Bielefeld University, GERMANY

W130.d "TUNABLE NANOGATE" DEVICE FOR SIZE-SORTING OF NANOPARTICLES

Satoko Fujiwara, Tatsuro Endo, Hideaki Hisamoto, and Kenji Sueyoshi Osaka Prefecture University, JAPAN

d - Fundamentals in Microfluidics and Nanofluidics

Modeling/Numerical Simulation

M131.d SIMULATION OF THE MIGRATION OF RIGID NON-SPHERICAL PARTICLES IN CURVED MICRO CHANNELS

Thomas E. Hafemann and Jochen Fröhlich Technical University Dresden, GERMANY

T130.d A TRANSPORT-REACTION MODEL FOR EXPANDING THE DYNAMIC RANGE OF LATERAL FLOW IMMUNOASSAYS USING REAL-TIME IMAGING

Sathishkumar N. and Bhushan J. Toley *Indian Institute of Science, INDIA*

T131.d UNRAVEL THE PHYSICS OF PARTICLE FOCUSING MECHANISMS IN MICROCHANNELS

Marzieh Chaharlang, Brady L. Goenner, and Bruce K. Gale University of Utah, USA

W131.d OPTIMIZING RESIDENCE TIME DISTRIBUTION IN CAPILLARY-BASED SYSTEMS USING COMPUTATIONAL FLUID DYNAMIC SIMULATIONS

Kirandeep K. Gill¹, Deema A. Masoudi¹, Sughan Narayanasamy¹, Patrick Hester², Pedro Estrela¹, and Nuno M. Reis¹ ¹University of Bath, UK and ²Lamina Dielectrics Ltd, UK

d - Fundamentals in Microfluidics and Nanofluidics

Nanofluidics/Nanofluidic Phenomena

M132.d STRUCTURAL ANALYSIS OF WATER CONFINED IN NANOCHANNELS

Kazuma Mawatari¹, Jun Shirai¹, Koji Ohara², Shinji Kohara³, Toshio Yamaguchi⁴, Koji Yoshida⁴, and Takehiko Kitamori¹

¹ University of Tokyo, JAPAN, ² Japan Synchrotron Radiation Research Institute, JAPAN, ³ National Institute for Materials Science, JAPAN, and ⁴ Fukuoka University, JAPAN

M133.d UNRAVELING THE UNEXPECTED CHANNEL-LENGTH-DEPENDENT NANOFLUIDIC SALINITY GRADIENT POWER: EXPERIMENTS AND MODELING

Li-Hsien Yeh and Po-Hsien Peng National Taiwan University of Science and Technology, TAIWAN

T132.d THERMAL DIFFUSIVITY MEASUREMENT IN NANOCHANEL BY PHOTOTHERMAL OPTICAL PHASE SHIFT

Kazuma Mawatari, Tokio Sato, and Takehiko Kitamori University of Tokyo, JAPAN

W132.d EFFECT OF PORE SIZE ON SLIP FLOW IN MICRO- AND NANO-POROUS MEDIA

Md Minhajul Islam and D. Jed Harrison *University of Alberta, CANADA*

Nanofluidics/Nanofluidic Phenomena

W133.d THERMAL AND ELECTROKINETIC EFFECT ON DIFFUSIOOSMOSIS-DRIVEN IONIC TRANSPORT THROUGH NANOPORES

Jongwan Lee¹, Kyunghun Lee¹, Cong Wang², Dogyeong Ha¹,

Jungyul Park2, and Taesung Kim1

¹Ulsan National Institute of Science and Technology (UNIST),

KOREA and 2 Sogang University, KOREA

d - Fundamentals in Microfluidics and Nanofluidics

Platforms Based on Capillary Forces

M134.d A HYDROGEL MICRONEEDLE PATCH FOR CONTINUOUS MONITORING OF GLUCOSE FROM INTERSTITIAL FLUID

Somayeh Ramezanian and Jacqueline C. Linnes *Purdue University, USA*

M135.d ENABLING RHEOLOGICAL ANALYSIS OF COMPLEX FLUIDS AT THE POINT-OF-NEED

Jose C. Contreras-Naranjo and Victor M. Ugaz Texas A&M University, USA

M136.d POINT-OF-CARE 2DPN ELISA WITH AUTOMATED ENHANCED DETECTION OF AMPLIFIED NUCLEIC ACIDS

Kristin M. Byers¹, Anna R. Bird¹, Hyundae Cho², and Jacqueline C. Linnes¹

¹Purdue University, USA and ²Crosslife Technologies Inc., USA

T133.d 3D PRINTED DOMINO CAPILLARIC CIRCUITS WITH INTEGRATED REAGENTS AND SAMPLE AUTONOMOUS ALIQUOTING FOR DIAGNOSTICS

Oriol Ymbern, Arya Tavakoli, Mohamed Yafia, Andy Ng, and David Juncker *McGill University, CANADA*

T134.d ADVANCES IN FLUID CONTROL TECHNIQUES FOR PAPER BASED MICROFLUIDIC DEVICES (MICROPADS)

Aditya R. Jangid, E. Brandon Strong, Carsten Knutsen, Jay T. Wells, Megan L. Mitchell, Brittany Lore, Nick Tod, Emiliano Escamilla, Andres W. Martinez, and Nathaniel W. Martinez California Polytechnic State University, USA

T135.d EVAPORATION FLOW: ANALYSIS THAT IS INDEPENDENT OF HUMIDTY AND TEMPERATURE

Marta Orlowska¹, Bin Guan¹, Rossen Sedev^{1,2}, and Craig Priest¹

1 University of South Australia, AUSTRALIA and

2 Curtin University, AUSTRALIA

T136.d PORTABLE UV ADSORPTION BASED HIGHLY SENSITIVE DETECTION OF HEMOGLOBIN ON PLASTIC MICROFLUIDIC CHIP

Wei Wang, Kay Khine Maw, WeiDong Zhou, and ZhiPing Wang Singapore Institute of Manufacturing Technology (A*Star), SINGAPORE

Platforms Based on Capillary Forces

W134.d 3D-PRINTED PASSIVE GRADIENT GENERATORS

Cesar Parra-Cabrera, Hans Van Cauteren, Clement Achille, Ruben Dochy and Rob Ameloot *KU Leuven, BELGIUM*

W135.d DEVELOPMENT OF LASER-CUT MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICE WITH SUCROSE VALVE FOR AUTOMATED COMPETITIVE ELISA OF AFLATOXIN B1

Sumamal Charernchai¹, Miyuki Chikae¹, Wanida Wonsawat², Hirose Daisuke¹, Phan T. Tue³, and Yuzuru Takamura¹

- ¹ Japan Advanced Institute of Science and Technology (JAIST), JAPAN,
- ²Suan Sunandha Rajabhat University, THAILAND, and
- ³Tokyo Institute of Technology, JAPAN

W136.d MERGING 3D PRINTING WITH PAPER-BASED MICROFLUIDIC DEVICES (MICROPADS)

E. Brandon Strong, Aditya R. Jangid, Siddharth Prabhu, Megan L. Mitchell, Jonah Holbrook, Jacqueline Chuang, Oscar Mercado, Bo Liu, Andres W. Martinez, and Nathaniel W. Martinez California Polytechnic State University, USA

W137.d SYNTHETIC MICROFLUIDIC PAPER WITH SUPERIOR FLUORESCENT SIGNAL READOUT

Weijin Guo, Jonas Hansson, and Wouter van der Wijngaart KTH Royal Institute of Technology, SWEDEN

d - Fundamentals in Microfluidics and Nanofluidics

Others

M137.d BOUNDARY LAYER MODIFICATION FOR A MICROTESLA ROTOR PUMPING OF NON-NEWTONIAN FLUIDS

Jessica Hallgath and Joe Fujiou Lo *University of Michigan, USA*

M138.d DIRECT IMAGING OF CHANNEL CROSS-SECTION FOR INVESTIGATING INERTIAL FOCUSING DYNAMICS IN A CURVED CHANNEL

Jian Zhou and Ian Papautsky University of Illinois, Chicago, USA

T137.d A FACILE AND ROBUST METHOD FOR THE PREPARATION OF QUASI-DOUBLE EMULSIONS USING A HIGH-DENSITY MICROWELL ARRAY

Yin Wu, Xu Cui, Zongwei Zhang, and Gang Li Chongging University, CHINA

T138.d LATERAL FOCUSING IN VISCOELASTIC FLOW IN SPIRAL CHANNELS

Hua Gao, Jian Zhou, and Ian Papautsky University of Illinois, Chicago, USA

Others

W138.d INVESTIGATION ON VON WILLEBRAND FACTOR (VWF) PROTEOLYSIS BY ADAMTS13 ON-A-CHIP

Amid Shakeri and Tohid F. Didar McMaster University, CANADA

W139.d SPATIOTEMPORALLY GENERATED MICROFLUIDS WITH THE AID OF HIGH-SPEED FLOW CONTROL

Yusuke Kasai, Makoto Saito, Shinya Sakuma, and Fumihito Arai Nagoya University, JAPAN

e - Micro- and Nanoengineering

Bonding, Sealing & Interfacing Technologies

M139.e CUSTOMIZABLE WORLD-TO-CHIP INTERFACE IN COMBINATION WITH MULTIPHASE MICROFLUIDICS EXPANDING THE

APPLICATION RANGE OF A LAB-ON-CHIP PLATFORM Hannah Bott, Franz Lärmer, and Jochen Hoffmann Robert Bosch GmbH. GERMANY

M140.e HIGH-YIELD PARALLEL ASSEMBLY OF SINGLE SPHERE ON GEOMETRICALLY DESIGNED ADHESIVE POLYMER-POST

Junghyun Bae, Seojoo Kim, and Wook Park Kyung Hee University, KOREA

M141.e POST-PROCESSING COMPATIBLE PACKAGING METHOD FOR CMOS OPTO-NANOFLUIDIC CHIP

Jaehwan Kim, Huaiyu Meng, and Rajeev J. Ram Massachusetts Institute of Technology, USA

T139.e ENABLING COST-EFFECTIVE GLASS MICROFLUIDICS FOR LIFE SCIENCES: THE EXAMPLE OF A COMPLETE SEQUENCING DEVICE FABRICATED AT WAFER SCALE

Sarah Heub¹, Rita Smajda¹, Guy Voirin¹, Gilles Weder¹, Anke Sanz-Velasco², Tobias Bauert², Alexios Tzannis², Raphaël Pugin¹, and Michel Despont¹ ¹CSEM. SWITZERLAND and ²IMT AG. SWITZERLAND

T140.e INTEGRATION OF POROUS SILICON-BASED OPTICAL APTASENSORS IN A 3D-PRINTED MICROFLUIDIC PLATFORM FOR PROTEIN DETECTION

Sofia Arshavsky-Graham^{1,2}, Niklas-Maximilian Epping², Anton Enders², Thomas Scheper², Janina Bahnemann², and Ester Segal¹

1 Technion – Israel Institute of Technology, ISRAEL and
2 Leibniz Universität Hannover, GERMANY

T141.e RAPID PDMS-GLASS BONDING USING ARGON PLASMA JET TOWARDS AUTOMATIC CHIP FABRICATION

Shih-Chi Chuang and Chia-Hung Dylan Tsai National Chiao Tung University, TAIWAN

Bonding, Sealing & Interfacing Technologies

W140.e FABRICATION OF PMMA MICROFLUIDIC DEVICES INTEGRATED WITH POROUS PETE MEMBRANES FOR RELIABLE CYTOTOXICITY TESTS OF DRUGS

Thao Nguyen¹, Su Hyun Jung¹, Min Seok Lee¹, Tae-Eun Park¹, Suk-kyun Ahn², and Joo H. Kang¹

¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Pusan National University, KOREA

W141.e PDMS BONDING WITHOUT 02 PLASMA TREATMENT

Haruka Oda and Shoji Takeuchi University of Tokyo, JAPAN

e - Micro- and Nanoengineering

Micropumps, Valves, and Dispensers

M142.e 3D FABRICATED PNEUMATIC GAIN VALVES FOR INTEGRATED LOGIC CONTROLLERS

Hsiang-Chih Yang, and Yu-Chuan Su National Tsing Hua University, TAIWAN

M143.e STAINLESS MICROFLUIDIC PROBE WITH 2D-ARRAY APPERTURES

Shogo Kamiya, Koki Takahashi, Hidekuni Takao, Fusao Shimokawa, and Kyohei Terao *Kagawa University, JAPAN*

T142.e HIGH-THROUGHPUT, LARGE-SCALE AND ULTRA-LOW PROTEIN CONSUMPTION: A NOVEL DROPLET-BASED PROTEIN CRYSTALLIZATION SYSTEM

Hui-Feng Wang¹, Jian-Bo Chen², Sheng Ye¹, and Qun Fang¹

1Zhejiang University, CHINA and
2Hanazhou Jiejing Biotechnolgy Co., Ltd, CHINA

T143.e VALVES AND PUMPS USING COLLAGEN-BASED

TUBULAR CONSTRUCTS

Kelvin Chow, Nima Vaezzadeh, and Axel Günther University of Toronto, CANADA

W142.e FROM 'DIGITAL' TO 'ANALOGUE' PUMPING: COMPLEMENTING AN EXISTING LAB-ON-CHIP ARCHITECTURE WITH NOVEL MICROFLUIDIC PUMPING METHODS

Hannah Bott¹, Franz Lärmer¹, Roland Zengerle², and Jochen Hoffmann¹ Robert Bosch GmbH, GERMANY and ²University of Freiburg, GERMANY

W143.e MULTIFUNCTIONAL FEMTO-PIPETTE IN OPEN MICROFLUIDICS

Eleonoor Verlinden¹, Masoud Madadelahi^{1,2}, Edin Sarajlic³, Amir Shamloo², Andreas H. Engel¹, Urs Staufer¹, and Murali K. Ghatkesar¹

¹Delft University of Technology, THE NETHERLANDS,

²Sharif University of Technology, IRAN, and

³SmartTip B.V., THE NETHERLANDS

e - Micro- and Nanoengineering

Microscale Fabrication, Patterning, and Integration

M144.e A FLEXIBLE PLATFORM WITH INKJET-PRINTED ORGANIC ELECTROCHEMICAL TRANSISTORS INTEGRATED IN MICROFLUIDICS FOR SELECTIVE ION DETECTION

Silvia Demuru, Brince P. Kunnel, and Danick Briand École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

M145.e ADDITIVE MANUFACTURING OF MULTILAYERED MICROFLUIDIC DEVICES WITH DENSELY PACKED MICROSCALE FEATURES

Chia-Heng Chu, Enerelt Buretugs, Jacob M. Owens, Ruxiu Liu, Dohwan Lee, and A. Fatih Sarioglu Georgia Institute of Technology, USA

M146.e ARRAY OF SOFT OR HARD MAGNETIC MICROTRAPS BASED ON COMPOSITE POLYMER NOVEL TECHNOLOGY

Lucie Descamps¹, Samir Mekkaoui¹, Emmanuelle Laurenceau¹, Marie-Charlotte Audry¹, Jessica Garcia², Léa Payen², Damien Le Roy³, and Anne-Laure Deman¹ ¹Lyon Institute of Nanotechnology, FRANCE, ²Hospices Civils de Lyon, FRANCE, and ³Institut Lumière Matière, FRANCE

M147.e BULK SYNTHESIS OF HYDROGEL ANISOTROPIC MICROPARTICLES WITH DEGASSED REPLICA MOLDING LITHOGRAPHY

Hyeon Ung Kim, Yong Jun Lim, Nak Jun Lee, Hyun Jee Lee, and Ki Wan Bong Korea University, KOREA

M148.e DEVELOPMENT OF A LARGE-AREA TALL MICRONEEDLE ARRAY SKIN PATCH WITH RADIATION: A NEW DESIGN AND ITS ASSESSEMENT FOR A LONG-TERM TRANSDERMAL DRUG DELIVERY

Ki-Hwan Nam¹, Chan Bae Jeong¹, Dong-Uk Kim¹, Youn-Mook Lim², and Ki Soo Chang¹ ¹Korea Basic Science Institute, KOREA and

²Korea Atomic Energy Research Institute (KAERI), KOREA

M149.e FLEXIBLE, TRANSPARENT, SUB-100 µM MICROFLUIDIC CHANNELS WITH FDM 3D-PRINTED THERMOPLASTIC POLYURETHANE

Matt D. Nelson, Nirupama Ramkumar, and Bruce K. Gale University of Utah, USA

M150.e GRAPHENE-MEDIATED MICRO-PATTERNING OF CONDUCTIVE POLYMERS TOWARD IMPLANTABLE ELECTRODES

Tetsuhiko F. Teshima¹, Koji Sakai¹, Yoshiaki Kashimura¹, Hiroki Miyazako¹, Hiroshi Nakashima¹, Shingo Tsukada¹, Yuko Ueno¹, Toshihisa Osaki², and Shoji Takeuchi²

¹ Nippon Telegraph and Telephone Corporation, JAPAN and ² University of Tokyo, JAPAN

Microscale Fabrication, Patterning, and Integration

M151.e LOW-COST AND 3D-PRINTED HOLLOW MICRONEEDLE ARRAYS WITH COMPLEX DESIGNS FOR TRANSDERMAL DRUG DELIVERY APPLICATIONS

Christopher Yeung, Haisong Lin, Shawnus A. Chen, Kimber King, Brian King, Farooq Akhtar, and Sam Emaminejad University of California, Los Angeles, USA

M152.e MINIATURIZED WRINKLED ELECTRODE WITH 30-FOLD ENHANCEMENT IN ELECTROCHEMICAL SIGNAL

Amanda H. Imamura^{1,2}, Julia Zakashansky², Emanuel Carrilho¹, and Michelle Khine² ¹ University of São Paulo, BRAZIL and ² University of California, Irvine, USA

M153.e PDMS CURING INHIBITION BY 3D-PRINTED TEMPLATES. WHY? AND HOW TO AVOID IT?

Bastien Venzac¹, Shanliang Deng^{1,2}, Shuhan Yang^{1,2}, Aufried Lenferink¹, Cees Otto¹, and Séverine Le Gac¹ *University of Twente, THE NETHERLANDS and *Tianjing University. CHINA

M154.e RAPID FABRICATION OF A SLIPCHIP DEVICE FOR LOCAL STIMULATION USING DESKTOP SLA PRINTING

Megan A. Catterton and Rebecca R. Pompano University of Virginia, USA

M155.e SELF-DRIVEN SURFACE-ENHANCED RAMAN SCATTERING MICROFLUIDIC DEVICES FABRICATED BY FEMTOSECOND LASER FOR HG2+ DETECTION

Zhi Yu¹, Xiuyun Li¹, and Chunlei Guo¹.²
¹ Chinese Academy of Sciences, CHINA and ² University of Rochester, USA

M156.e STREPTAVIDIN-FUNCTIONALIZED HYDROGEL MICROPARTICLES FOR CUSTOMIZABLE MULTIPLEX BIOMOLECULE DETECTION

Yoon Ho Roh, Hyun Jee Lee, and Ki Wan Bong Korea University, KOREA

M157.e THREE-DIMENSIONAL LIQUID PATTERING WITH MICROMESH STRUCTURE BY 3D PRINTING FABRICATION

Suryong Kim¹, Byungjun Lee², Jihoon Ko¹, Youngtaek Kim¹, and Noo Li Jeon¹

¹Seoul National University, KOREA and ²Curiochips, KOREA

T144.e A SANDWICH-STRUCTURED RATION DEVICE BASED ON POLYIMIDE-TRANSFERRED VOLUME SENSOR FOR FLEXIBLE MICROFLUIDIC SYSTEM

Zhihua Pu, Jiaming Ma, Wenwen Li, Xiaochen Lai, Xiao Su, Haixia Yu, and Dachao Li Tianjin University. CHINA

T145.e A TWO-WAY MEMBRANE-INTEGRATED MICROFLUIDIC DEVICE FOR PERMEATION ASSAYS

Marika Sugimoto, Keisuke Yanagisawa, and Naoki Sasaki Toyo University, JAPAN

Microscale Fabrication, Patterning, and Integration

T146.e BIOINSPIRED MICROMECHANICAL INTERLOCKING STRUCTURES FOR ENHANCED ADHERENCE BETWEEN SOFT ELASTOMERIC LAYERS

Navajit S. Baban^{1,2}, Ajymurat Orozaliev¹, Christopher. J. Stubbs², and Yong-Ak Song^{1,3} ¹New York University, Abu Dhabi, UAE and ²New York University, USA

T147.e DEVELOPMENT OF A LARGE-AREA AND SPHERICAL ARRAY OF POLYMERIC PHOTOVOLTAIC PIXELS FOR ARTIFICIAL VISION

Marta J.I. Airaghi Leccardi, Naïg A.L. Chenais, and Diego Ghezzi École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

T148.e DEVELOPMENT OF PZT ACTUATOR ARRAY ON AN ACTIVE-MATRIX OXIDE TFTS FOR SINGLE CELL SPATIAL TRANSCRIPTOME AIMING NEURODEGENERATIVE DISEASE

Rahul Bhardwaj¹, Phan T. Tue², Shinsuke Ishigaki³, Hidetaka Uno⁴, Zhi-Hong Wang⁴, Yoshiaki Ukita⁵, Sadahiro Iwabuchi⁶, Shinichi Hashimoto⁶, Takehiko Oka⁷, Kozo Kawahara⁷, Gen. Sobue³, Tsuneo Urisu⁴, Daisuke Hirose¹, and Yuzuru Takamura¹

¹Japan Advanced Institute of Science and Technology (JAIST), JAPAN, ²Tokyo Institute of Technology, JAPAN, ³Nagoya University Grad School of Medicine, JAPAN, ⁴Nagoya University Institute of Innovation for Future Society, JAPAN, ⁵University of Yamanashi, JAPAN, ⁶Kanazawa University, JAPAN, and ⁷World Fusion Inc., JAPAN

T149.e FLOW RATE DETERMINATION IN CAPILLARY-DRIVEN MICROFLUIDICS USING COMBINATORIAL SELECTION OF RESISTORS VIA ELECTROWETTING AND SMARTPHONE CONTROL

Marie L. Salva^{1,2}, Yuksel Temiz¹, Marco Rocca², Yulieth C. Arango¹, Christof M. Niemeyer², and Emmanuel Delamarche¹

1BM Research – Zürich, SWITZERLAND and

2Karlsruhe Institute of Technology, GERMANY

T150.e HIGH-VOLUME FABRICATION OF SYLGARD 184 DEVICES FOR SINGLE CELL ANALYTICS

Christina Liedert¹, Benedek Poor², Olli-Heikki Huttunen¹, Johanna Hiitola-Keinänen¹, Sanna Aikio¹, Heli Pessa², Pinja Elomaa², Jussi Hiltunen¹, Päivi Saavalainen², and Leena Hakalahti¹
¹VTT Technical Research Centre of Finland, FINLAND and ²University of Helsinki, FINLAND

T151.e LOW-COST, LARGE-SCALE, CONTINUOUS PRODUCT OF GIANT MAGNETIC MICROPARTICLES, AND CUSTOMIZED FUNCTIONALIZATION

Suk-Heung Song¹, Sujeong Lim¹, Hye Yeon Choi², Gyu Dong Kim², Joo Ho Kim², Yong-Gyun Jung², and Wook Park¹

¹Kyung Hee University, KOREA and ²Ezdiatech Inc., KOREA

T152.e PARTICLE MANIPULATION ON MAGNETIC GRID PATTERN

Fujio Tsumori Kyushu University, JAPAN

Microscale Fabrication, Patterning, and Integration

T153.e RAPID AND LOW-COST FABRICATION AND INTEGRATION OF COMPLEX 3D MICROFLUIDIC ARCHITECTURES FOR LAB-ON-BODY APPLICATIONS

Haisong Lin, Christopher Yeung, Yichao Zhao, Shuyu Lin, Bo Wang, Xuanbing Cheng, Zhaoqing Wang, Tianyou Cai, Wenzhuo Yu, and Sam Emaminejad University of California, Los Angeles, USA

T154.e ROLL-TO-ROLL MANUFACTURING OF MICROFLUIDIC CHIPS FOR BIOANALYTICAL APPLICATIONS

Jan Hesse¹, Anja Haase¹, Dieter Nees¹, Stephan Ruttloff¹, Johannes Götz¹, Pelin Tören-Özgün¹, Markus Rumpler¹, Martin Smolka¹, Georgios Kokkinis², Günther Kriechhammer², Daniel Scheidl², Bianca Wilfing², Ingo Katzmayr³, Max Sonnleitner³, Mirko Lohse⁴, and Manuel Thesen⁴

1 Joanneum Research FmbH, AUSTRIA, ²Pessl Instruments GmbH, AUSTRIA, ³GENSPEED Biotech GmbH, AUSTRIA, and ⁴micro resist technology GmbH. GERMANY

T155.e SELF-PROPELLING MICRO SWIMMER WITH CONTROLLABLE MOTION

T157.e

Cheolheon Park¹, Yeongjae Choi², Hansol Choi², Seo Woo Song², Sunghoon Kwon², and Wook Park¹ ¹Kyung Hee University, KOREA and ²Seoul National University, KOREA

T156.e THE DEVELOPMENT OF A MICROFLUIDIC BLOOD OXYGENATOR WITH FOUR-SIDED GAS TRANSFER CHANNELS

Mohammadhossein Dabaghi¹, Neda Saraei¹, Gerhard Fusch¹, Niels Rochow¹, John L. Brash¹, Christoph Fusch^{1,2}, and P. Ravi Selvaganapathy¹ ¹McMaster University, CANADA and ²University Hospital Nuremberg, GERMANY

3D PRINTING OF FLUORINATED POLYMERS TO MODULATE THE SURFACE WETTING BEHAVIOUR

Patrick Risch, Dorothea Helmer, Frederik Kotz, and Bastian E. Rapp University of Freiburg, GERMANY

W144.e ULTRA-THIN GLASS MICRO DOME STRUCTURE (GMDS) FOR MULTIDIRECTIONAL CELL OBSERVATION

Yusufu Aishan^{1,2}, Yaxiaer Yalikun¹, Satoshi Amaya¹, Yigang Shen^{1,2}, and Yo Tanaka^{1,2}
¹Biosystems Dynamics Research (BDR), JAPAN and ²Osaka University, JAPAN

W145.e A SIMPLE AND ROBUST FABRICATION METHOD FOR CREATING 3D TAPERED POLYDIMETHYLSILOXANE CHANNELS

Hoon Suk Rho¹, Henk-Willem Veltkamp², Danielle Baptista¹, Séverine Le Gac¹, and Pamela Habibovic¹ ¹Maastricht University, THE NETHERLANDS and ²University of Twente, THE NETHERLANDS

Microscale Fabrication, Patterning, and Integration

W146.e APPLICATION OF 3D-PRINTED MICROFLUIDIC DEVICE AND MINIATURE PHOTODETECTION TECHNOLOGY TOWARDS PHOTOMETRY-BASED BIOCHEMICAL ANALSYSIS IN DEEP-SEA

Tatsuhiro Fukuba¹ and Yuki Sano²

¹Japan Agency for Marine-Earth Science and Technology, JAPAN and ²Yokohama Citv Universitv. JAPAN

W147.e BIOMIMETIC UNDULATED MICROWRINKLES CONSTRUCTION BY ORIENTING MICROPARTICLES IN RESPONSIVE HYDROGEL SHEETS VIA DIELECTROPHORESIS

Min-Yu Chiang, Yu-Chih Lo, and San-Yuan Chen National Chiao Tung University, TAIWAN

W148.e DUAL-FIBER OPTICAL STRETCHER CONFIGURED FOR SINGLE CELL ROTATIONAL MANIPULATION

Liang Huang, Fei Liang, Peng Zhao, Yongxiang Feng, and Wenhui Wang Tsinghua University, CHINA

W149.e A CELL-LOSS-FREE CONCAVE MICROWELL ARRAY BASED SIZE-CONTROLLED MULTI-CELLULAR TUMOROID GENERATION FOR ANTI-CANCER DRUG SCREENING

Soo Yeon Jeong, Sang Woo Lee, Tae Hoon Shin, and Gi Seok Jeong Asan Medical Center, KOREA

W150.e KIRIGAMI-INSPIRED MESH FOR RARE CELL RECOVERY

Yaoping Liu¹, Meixuan Zhang¹, Han Xu², Xiaolong Rao³, and Wei Wang^{1,4}

¹Peking University, CHINA, ²Peking University Shenzhen Graduate School, CHINA, ³Peking University First Hospital, CHINA, and ⁴National Key Laboratory of Science and Technology on Micro/Nano Fabrication. CHINA

W151.e LIGHT DRIVEN MASSIVE INTEGRATE GEL ACTUATOR FOR SINGLE CELL MANIPULATION

Yuha Koike¹, Yoshiyuki Yokoyama², and Takeshi Hayakawa¹ Chuo University, JAPAN and ²Toyama Industrial Technology Research and Development Center, JAPAN

W152.e MICROFLUIDIC, HIGHER-THROUGHPUT ICE RECRYSTALLIZATION INHIBITION ASSAY

Prashant Agrawal, Audrey K. Gruneberg, Laurie A. Graham, Peter L. Davies, and Richard D. Oleschuk Queen's University, CANADA

W153.e PCB-IMPLEMENTED GRAPHENE ELECTROLYTE-GATED FIELD-EFFECT TRANSISTORS FOR BIOSENSING APPLICATIONS

Sotirios Papamatthaiou, Pedro Estrela, and Despina Moschou University of Bath, UK

Microscale Fabrication, Patterning, and Integration

W154.e PDMS MICROFLUIDIC DEVICES FABRICATION BY A CYCLIC BIOMACHINING PROCESS

Arrate Santaolalla¹, Yara Alvarez- Braña¹, Gorka Gallastegui¹, Lourdes Basabe-Desmonts^{1,2}, Naiara Rojo¹, and Fernando Benito-Lopez¹

¹University of the Basque Country, SPAIN and ²Basque Foundation of Science. SPAIN

W155.e SACRIFICIAL TEMPLATE REPLICATION-FABRIACTION OF SUSPENDED ARBITRARY THREE-DIMENSIONAL MICROCHANNELS IN FUSED SILICA GLASS

Frederik Kotz¹, Patrick Risch¹, Michael Thiel², Alexander Quick², Semih Sevim³, Joseph Puigmarti-Luis³, Dorothea Helmer¹, and Bastian E. Rapp¹

¹University of Freiburg, GERMANY, ²Nanoscribe GmbH, GERMANY and ³ETH Zürich, SWITZERLAND

W156.e STIMULI-RESPONSIVE HYDROGEL INSTRUMENT BASED ON FRAME TRANSFORMATION (SHIFT) BY UTILIZING DEFOCUSING PHOTOLITHOGRAPHY TECHNIQUE

Jinsik Yoon and Wook Park
Kyung Hee University, KOREA

W157.e THE ENCELADUS ORGANIC ANALYZER: INSTRUMENTATION AND METHODS FOR DETECTING TRACE ORGANIC MOLECULES IN OUR SOLAR SYSTEM

Zachary Estlack¹, Md Enayet Razu², Beau Compton², Zachary Duca³, Amanda Stockton³, Matin Golozar⁴, Anna Butterworth⁴, Jeremy McCauley⁴, James New⁵, Jungkyu Kim¹, and Richard A. Mathies⁴ ¹ University of Utah, USA, ² Texas Tech University, USA, ³ Georgia Tech, USA, ⁴ University of California, Berkeley, USA, and ⁵ University of Kent, UK

e - Micro- and Nanoengineering

Nanoscale Fabrication, Patterning, and Integration

M158.e FABRICATION AND EVALUATION OF FLEXIBLE NANOVALVES IN 2D- NANOCHANNELS

Hiroto Kawagishi¹, Shunichi Funano², Yo Tanaka², Shuichi Kawamata¹, and Yan Xu^{1,3} ¹ Osaka Prefecture University, JAPAN, ² RIKEN, JAPAN, and ³ Japan Science and Technology Agency (JST), JAPAN

M159.e FABRICATION OF NANOCHANNELS WITH EMBEDDED METAL ELECTRODES FOR ACTIVE CONTROL OF ZETA POTENTIAL

KuangHua Chou, Alexander Eden, David Huber, and Sumita Pennathur University of California, Santa Barbara, USA

M160.e RAPID STIMULI-RESPONSIVITY OF HYDROGEL MICROFIBER ACTUATOR WITH SURFACE POROUS STRUCTURE

Masahiko Karube and Hiroaki Onoe Keio University, JAPAN

Nanoscale Fabrication, Patterning, and Integration

T158.e HIGH-PERFORMANCE CERAMIC EOF PUMP REALIZED BY MASSIVELY PARALLEL SACRIFICIAL SILICON NANO-PILLAR MOULDING

Lucas J. Kooijman, Yasser Pordeli, Bernard Y. van der Wel, Erwin W. Berenschot, Jan C.T. Eijkel, and Niels R. Tas University of Twente, THE NETHERLANDS

T159.e LARGE-SCALE NANOPORE ARRAY BASED ON A COST-EFFECTIVE SHRINKAGE PROCESS FOR NANOSIZED TARGET SEPARATION

Yaoping Liu¹, Jingquan Liu^{2,3}, and Wei Wang^{1,2}

¹Peking University, CHINA, ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA, and ³Shanghai Jiao Tong University, CHINA

W158.e A SIMPLE METHOD FOR 3D MULTIMATERIAL NANOSTRUCTURE MANUFACTURING

Benoît X.E. Desbiolles, Arnaud Bertsch, and Philippe Renaud École Polytechnique Fédérale de Lausanne, SWITZERLAND

W159.e FREESTANDING GRAPHENE CVD GROWTH ON INSULATING SUBSTRATE USING GA CATALYST

Tomoki Tsuji, Kenta Arima, Kazuya Yamamura, and Kentaro Kawai Osaka University, JAPAN

W160.e INTEGRATING A NANOPORE INTO A MICRO-CHANNELED AFM CANTILEVER FOR THE LOCALIZED DETECTION OF IONS AND BIOMOLECULES

Tilman Schlotter¹, Morteza Aramesh¹, Csaba Forró¹, Livie Drowling-Carter¹, Ines Lüchtefeld¹, Stephan J. Ihle¹, Ivan Shorubalko², Vahid Hosseini¹, Dmitry Momotenko¹, Tomaso Zambelli¹, Enrico Klotzsch^{1,3}, and Janos Vörös¹ ¹ETH Zürich, SWITZERLAND, ²Empa Dübendorf, SWITZERLAND, and ³Humboldt Universität zu Berlin. SWITZERLAND

e - Micro- and Nanoengineering

Novel, Smart, and Responsive Materials

M161.e FABRICATION AND CHARACTERIZATION OF FLEXDYM-POLYCARBONATE DEVICES: IMPLEMENTING NEW MATERIALS FOR ORGAN-ON-CHIP TECHNOLOGIES

Alexander H. McMillan^{1,2}, Emma K. Thomée^{1,3}, Alessandra Dellaquila^{1,4}, and Sasha Cai Lesher-Pérez¹

¹ Elvesys Microfluidic Innovation Center, FRANCE, ²KU Leuven, BELGIUM, ³ University of Strasbourg, FRANCE, and ⁴ University of Bielefeld, GERMANY

T160.e 3D DIFFUSION-INDUCED MICROFABRICATION OF MECHANICALLY HETEROGENEOUS HYDROGEL FOR BIOMEDICAL APPLICATION

Chih-Chen Lin, and Yu-Chuan Su National Tsing Hua University, TAIWAN

Novel, Smart, and Responsive Materials

T161.e NANOZYME-AMPLIFIED LATERAL FLOW IMMUNOASSAY FOR MOLECULAR SIGNATURE DETECTION OF CARDIOVASCULAR DISEASES

Marta Broto¹, Brian Chen¹, Michael R. Thomas¹, Chris S. Wood¹, Amrit S. Lota², Sanjay Prasad², and Molly M. Stevens¹ ¹Imperial College London, UK and ²Royal Brompton Hospital, UK

W161.e ENGINEERED 3D ELECTROOSMOTIC MICROCHANNELS FOR RAPID AND MASS TRANSPORTATION OF BODY FLUIDS IN WEARABLE DEVICES

Shinya Kusama, Kaito Sato, Yuya Matsui, Shotaro Yoshida, and Matsuhiko Nishizawa Tohoku University, JAPAN

e - Micro- and Nanoengineering

Surface Modification

M162.e ANALYZING PEPTIDE ADSORPTION STATES VIA NANOWIRE-EMPLOYED INFRARED SPECTROMETRY

Hiroki Naito¹, Takao Yasui¹, Taisuke Shimada¹, Nobutaka Shioya², Takafumi Shimoaka², Masayoshi Tanaka³, Kazuki Nagasima⁴, Mina Okochi³, Takeshi Yanagida^{4,5}, Takeshi Hasegawa², and Yoshinobu Baba^{1,6}

¹Nagoya University, JAPAN, ²Kyoto University, JAPAN, ³Tokyo Institute of Technology, JAPAN, ⁴Kyushu University, JAPAN, ⁵Osaka University, JAPAN, and ⁶National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

M163.e NANOFORESTS GROWN ON MICROPILLARS FOR CARBONYL COMPOUNDS PRECONCENTRATION AND SERS DETECTION

Jie Cheng, Yudong Yang, Haiyang Mao, Yifei Ye, Wenjie Zhao, Xinyu Wei, Yang Zhao, Mingxiao Li, and Chengjun Huang *Chinese Academy of Sciences, CHINA*

T162.e FABRICATION OF TiO₂ MICRO-SPIKES AND MICRO-FLOWERS FOR MASSIVELY PARALLEL INTRACELLULAR DELIVERY

Loganathan Mohan¹, Srabani Kar², Balasubramaniam Nandhini¹, Pallavi Gupta¹, Pallavi Shinde¹, Pallab Sinha Mahapatra¹, and Tuhin Subhra Santra¹

¹Indian Institute of Technology, Madras (IITM), INDIA and ²University of Cambridge, London, UK

T163.e STRETCHABLE AND TRANSPARENT SUPERHYDROPHOBIC AND OLEOPHOBIC PDMS THIN FILM WITH HIERARCHICAL STRUCTURES

Chaerin Yu¹, Eungjun Lee², Do Hyun Kim², and Dong-Weon Lee¹

1 Chonnam National University, KOREA and

2 Korea Advanced Institute of Science and Technology (KAIST), KOREA

Surface Modification

W162.e ADDITIVE SURFACE MODIFICATION BY POLYMER THIN FILM FORMATION USING ELECTROSPRAY DEPOSITION APPARATUS WITH A TERNARY ELECTRODE

Yuta Kuwahata¹, Hiroaki Takehara^{1,2}, and Takanori Ichiki^{1,2}

¹University of Tokyo, JAPAN and ²Innovation Center of NanoMedicine (iCONM), JAPAN

W163.e MASKLESS SURFACE PATTERNING BY PLASMA POLYMERIZATION FOR MULTIBIOSENSING APPLICATIONS

Laura Barillas¹, Ekaterina Makhneva¹, Ihsan Amin¹, Klaus-Dieter Weltmann¹, Hermann Seitz², and Katja Fricke¹ ¹Leibniz Institute for Plasma Science and Technology (INP), GERMANY and ²University of Rostock, GERMANY

e - Micro- and Nanoengineering

Others

M164.e PRODUCING PERIODIC SEQUENTIAL FLOW BY GRAVITY-DRIVEN MICROFLUIDIC ACTUATORS

Zhenglin Li and Sung-Jin Kim Konkuk University, KOREA

T164.e SURFACE TENSION DRIVEN SWARM ROBOTS FOR EMERGING COORDINATING MOTIONS

Koki Yoshida, Tomoki Hayashi, and Hiroaki Onoe Keio University, JAPAN

W164.e BUBBLE-ASSISTED MICRO / NANOFLUIDICS: DEMONSTRATION OF BUBBLE GENRATION AND VALVE FUNCTION

Shun Furukawa, Kazuma Mawatari, and Takehiko Kitamori University of Tokyo, JAPAN

f - Sensors and Detection Technologies

Biosensors

M165.f A MICROFLUIDIC CHIP INTEGRATING IMPEDANCE FLOW CYTOMETRY AND ELECTRIC IMPEDANCE SPECTROSCOPY FOR SINGLE-CELL ELECTRICAL PROPERTY MEASUREMENT

Yongxiang Feng, Peng Zhao, Fei Liang, Liang Huang, and Wenhui Wang

Tsinghua University, CHINA

M166.f AN "ENZYME-RESPONSIVE IONIC LIQUID" TOWARD CAPILLARY ARRAY-BASED IMMUNOASSAY MICRODEVICES

Ryoutarou Oishi, Tatsumi Mizuta, Kenji Sueyoshi, Tatsuro Endo, and Hideaki Hisamoto Osaka Prefecture University, JAPAN

M167.f ANALYTE CAPTURE IN AN ARRAY OF FUNCTIONALIZED DROPLETS FOR A REGENERABLE BIOSENSOR

Charles-Louis Azzopardi, Franck Chollet, Jean-François Manceau, and Wilfrid Boireau

Unviersity Bourgogne Franche-Comté, FRANCE

Biosensors

M168.f CENTRIFUGAL MICROFLUIDIC PLATFORM COMPRISING AN ARRAY OF BEAD MICROCOLUMNS FOR THE MULTIPLEXED COLORIMETRIC QUANTIFICATION OF INFLAMMATORY BIOMARKERS AT THE POINT-OF-CARE

Ahmad S. Akhtar, Inês F. Pinto, Ruben R.G. Soares, and Aman Russom KTH Royal Institute of Technology, SWEDEN

M169.f DEVELOPING INTEGRATED CENTRIFUGAL CONVECTIVE PCR DEVICE FOR DETECTION OF DRUG-RESISTANT GENE

Sakiko Ushiro, Masato Saito, Wilfred V. Espulgar, and Eiichi Tamiya Osaka University, JAPAN

M170.f ELECTRICAL DETECTION OF DEOXYRIBONUCLEASE USING DNA MOLECULES IMMOBILIZED BETWEEN MICROELECTRODES

Takahiro Himuro, Shota Tsukamoto, and Yoji Saito Seikei University, JAPAN

M171.f ENHANCING THE SENSING PERFORMANCE OF APTAMERIC GFETS FOR INTERLEUKIN-6 DETECTION USING NEGATIVE ELECTRIC FIELD

Zhuang Hao, Yunlu Pan, Cong Huang, and Xuezeng Zhao Harbin Institute of Technology, CHINA

M172.f IDENTIFYING MULTIPLE VIRAL SPECIES AT A SINGLE PARTICLE LEVEL USING A COMBINATION OF NANOPORES AND MACHINE LEARNING APPROACH

Akihide Arima¹, Makusu Tsutsui², Yoshida Takeshi², Kazumichi Yokota², Wataru Tonomura², Takao Yasui¹, Taisuke Shimada¹, Tomoko Yamazaki², Kenji Tatematsu², Shun'ichi Kuroda², Masateru Taniguchi², Takashi Washio², Tomoji Kawai², and Yoshinobu Baba¹

1 Nagoya University, JAPAN and 2 Osaka University, JAPAN

M173.f INKJET-PRINTED SINGLE-STEP COMPETITIVE IMMUNOASSAY MICRODEVICE FOR THE DETECTION OF CRP

Yuko Kawai¹, Masaya Kakuta², Kenji Sueyoshi¹, Tatsuro Endo¹, and Hideaki Hisamoto¹

¹Osaka Prefecture University, JAPAN and ²Sysmex Corporation, JAPAN

M174.f MULTIPLEXED DETECTION OF PLANT HEALTH BIOMARKERS

Eduardo J.S. Brás^{1,2}, Ana M. Fortes², Virginia Chu¹, Pedro Fernandes², and João P. Conde^{1,2}

¹Institute of Nanoscience and Nanoscience and Nanotechnology, PORTUGAL and ²Universidade de Lisboa. PORTUGAL

Biosensors

M175.f PRIMARY HAEMOSTASIS ASSESMENT BY REAL-TIME DIRECT SENSING OF PLATELET-COLLAGEN INTERACTIONS UNDER DYNAMICS IN A BROAD SHEAR RATE SPECTRUM WITH MICROACOUSTIC BIOSENSOR APPROACH

Aleksandr Oseev¹, Fabien Remy-Martin¹, Thomas Lecompte², Alain Rouleau¹, Guillaume Mourey^{1,3,4}, Jean-François Manceau¹, Céline Élie-Caille¹, Wilfrid Boireau¹, Emmanuel de Maistre⁵, and Thérèse Leblois¹

¹Université de Bourgogne Franche-Comté, FRANCE,

²Geneva University, SWITZERLAND, ³University Hospital of Besançon, FRANCE, ⁴Laboratoire de Biologir Médicale et de Grefffe, FRANCE, and ⁵Centre Hospitalier Universitaire de Dijon, FRANCE

M176.f RETROREFLECTIVE OPTICAL IMMUNOSENSING BASED ON THE BIOSPECIFIC PARTICLE MOVEMENT AND TIME-LAPSE IMAGING IN MICROCHANNEL

Kyung Won Lee, Kwan Young Jeong, Ka Ram Kim, Hyeong Jin Chun, and Hyun C. Yoon *Ajou University, KOREA*

M177.f SMARTPHONE-INTEGRATED IMMUNOSENSING BASED ON THE WAVELENGTH FILTERING FROM CHROMOGENIC ENZYMATIC REACTION

Kwan Young Jeong, Saemi Kim, Kyung Won Lee, Ka Ram Kim, Hyeong Jin Chun, and Hyun C. Yoon *Ajou University, KOREA*

M178.f SWEAT LACTIC ACID MONITORING SYSTEM USING PLASTER-BASED SAMPLING DEVICE FOR APPLICATION IN INTENSIVE CARE UNIT

Yusuke Suzuki¹, Akiko Hosoyama², Kenichiro Morisawa², Yasuhiko Taira², and Hiroyuki Kudo¹

¹Meiii University. JAPAN and

²St. Marianna University School of Medicine, JAPAN

M179.f USE OF A GLASS FIBRE MEMBRANE (GF/DVA) TOWARDS THE DEVELOPMENT OF A LATERAL FLOW ASSAY FOR DETECTION OF TRICLOSAN IN RIVER WATER

Samantha Richardson, Alexander Iles, Jeanette M. Rotchell, Mark Lorch, and Nicole Pamme University of Hull, UK

T165.f A DNA NANOTECHNOLOGY TOOLBOX FOR MIX-AND-MATCH BIOSENSOR DESIGN

lene Rutten, Saba Safdar, Karen Ven, Devin Daems, Dragana Spasic, and Jeroen Lammertyn KU Leuven, BELGIUM

T166.f AN ON-DEMAND HIGH-INTEGRATED MICROFLUIDIC DROPLET PLATFORM FOR SENSITIVE AND RAPID SERS DETECTION OF EPSTEIN-BARR VIRUS DNA

Wen Wu, Ya-Ning Wang, Wen-Shu Zhang, Wen-Qi Ye, Yue Wang, and Zhang-Run Xu Northeastern University, CHINA

Biosensors

ANGULAR-BASED MEASUREMENT IN 3D PAPER-BASED T167.f ANALYTICAL DEVICES

Dong-Ho Kim, Seong-Geun Jeong, Byungjin Lee, Jaeseong Kim, and Chang-Soo Lee Chungnam National University, KOREA

T168.f CONTINUOUS TISSUE-SELEX UTILIZING A PRE-SCREENING PROCESS FOR MEMBRANE TARGETING APTAMERS ON AN INTEGRATED MICROFLUIDIC SYSTEM

Yi-Cheng Tsai and Gwo-Bin Lee National Tsing Hua University, TAIWAN

T169.f SLIPSZYMES: LUBRICANT-INFUSED DNAZYME SURFACES FOR **DETECTION OF PATHOGENIC BACTERIA IN COMPLEX FLUIDS**

Hanie Yousefi¹, Sahar E. Samani², Akansha Prasad², Amid Shakeri², Hsuan-Ming Su², Carlos D.M. Filipe², and Tohid F. Didar² ¹University of Toronto, CANADA and ²McMaster University, CANADA

ELECTRICAL DETECTION OF THE MECHANICAL ALTERATION T170.f OF SICKLING RED BLOOD CELLS WITHIN A MICROFLUIDIC CAPILLARY NETWORK

Xu Tieying¹, Maria Lizarralde², Jean Roman¹, Wassim El Nemer². Bruno Le Pioufle¹, and Olivier Français^{1,3} ¹ENS Paris-Saclay, FRANCE, ²INTS, FRANCE and ³ESYCOM, FRANCE

FLEXIBLE MICROFLUIDIC NETWORKS ENABLING RAPID T171.f PROTOTYPING OF NOVEL SURFACE CHEMISTRIES IN LAB-ON-CHIP

Francesca Costantini¹, Lorenzo lannascoli¹, Nicola Lovecchio¹, Mara Mirasoli², Giampiero de Cesare¹, Domenico Caputo¹, and Augusto Nascetti1

¹Sapienza University of Rome, ITALY and ²University of Bologna, ITALY

T172.f **IMMUNOASSAYS BASED ON HOT ELECTRON INDUCED** ELECTROCHEMILUMINESCENSE ON DISPOSABLE CELL **CHIPS WITH PRINTED ELECTRODES**

Nur-E-Habiba^{1,2}, Kalle Salminen², Päivi Grönroos², Esko Kauppinen¹, Veikko Sariola1, and Sakari Kulmala2 ¹Tampere University, FINLAND and ²Aalto University, FINLAND

ISOTHERMAL NANOPORE DNA SENSING USING DIFFUSION CURRENT T173.f

Wei-Lun Hsu¹, Soumyadeep Paul¹, Zhen Gu², Ya-Lun Ho¹, Jean-Jacques Delaunay¹, Yi-Lun Ying², Yi-Tao Long^{2,3}, and Hirofumi Daiguji1 ¹University of Tokyo, JAPAN, ²East China University of Science and Technology, CHINA, and 3 Nanjing University, CHINA

OPTICAL BIOSENSING ON A SMART HANDSET: T174.f NON-SPECTROSCOPIC SENSING PLATFORM BASED ON RETROREFLECTION

Ka Ram Kim, Hyeong Jin Chun, Kyung Won Lee, Kwan Young Jeong, and Hyun C. Yoon Aiou University, KOREA

Biosensors

T175.f QUANTUM-LIMITED 2D SENSORS FOR PH AND BIOSENSING

Arvind Balijepalli¹, Son T. Le^{1,2}, Harish C. Pant³, and Curt A. Richter¹ National Institute of Standards and Technology (NIST), USA, ²Theiss Research, USA, and ³National Institutes of Health (NIH), USA

T176.f SENSITIVE REAGENT-FREE ELECTROCHEMICAL DETECTION OF HORMONE CORTISOL USING HYBRID

NANOCOMPOSITE-BASED SENSORS

Bo Wu, Ye Liu, Yi-Chieh Wang, and Li-Jing Larry Cheng Oregon State University, USA

T177.f SURFACE ENHANCED RAMAN SCATTERING ACTIVE CHIPS FOR MYCOTOXIN DETECTION IN FOOD MATRICES

Alessandro Chiadò, Chiara Novara, Niccolò Paccotti, Paola Rivolo, Francesco Geobaldo, and Fabrizio Giorgis *Politecnico di Torino, ITALY*

T178.f THREE-DIMENSIONAL PAPER-BASED DEVICE WITH INTEGRATED TIMER FUNCTION FOR PERSONAL IMMUNOASSAY APPLICATIONS

Chung-An Chen, Chiao-Wen Chen, Shi-Jia Chen, Chin-Chou Chu, and Chien-Fu Chen National Taiwan University. TAIWAN

National laiwan University, IAIWAN

T179.f UTILIZING A LIGHT IMAGE ARRAY WITH VARYING LIGHT INTENSITIES IN OPTICALLY-INDUCED DIELECTROPHORESIS

(ODEP)-BASED MICROFLUIDIC SYSTEM FOR A CULTURE-FREE SCREEN OF BACTERIA WITH DIFFERENT RESPONSES TO

ANTIBIOTICS TREATMENT

Po-Yu Chu¹, Chih-Yu Chen¹, and Min-Hsien Wu^{1,2}

¹ Chang Gung University, TAIWAN and

² Chang Gung Memorial Hospital, TAIWAN

W165.f A NOVEL HANDHELD MICRO-CAPILLARY BIOSENSOR FOR SALIVARY CORTISOL

Young J. Kim, Wan J. Kim, and Bongjin Jeong Electronics and Telecommunications Research Institute, KOREA

W166.f A NOVEL OXYGEN NANOSENSOR FOR IN VITRO MICROENVIRONMENT MONITORING IN MESENCHYMAL STEM CELL CULTURE

Yunjie Hao^{1,2}, Manohar Prasad Koduri^{1,2}, Fan Gang Tseng^{1,3}, James Henstock², John A. Hunt^{2,4}, and Judy Curran²

¹National Tsing Hua University, TAIWAN, ²University of Liverpool, UK,
³Academia Sinica, TAIWAN, and ⁴Nottingham Trent University, UK

W167.f AN INTEGRATED CAPILLARY-DRIVEN IMPEDIMETRIC BIOSENSOR FOR MICROPARTICLE-LABELED IMMUNOASSAY

Ali Khodayari Bavil¹, Drago Sticker², Peter Ertl², and Jungkyu Kim³

¹ Texas Tech University, USA, ² Vienna University of Technology,

AUSTRIA, and ³ University of Utah, USA

Biosensors

W168.f ASSESSMENT OF CARDIOMYOCYTE MATURITY BY MEASURING CHANGES IN CONTRACTILE FORCE ACCORDING TO

DRUG CONCENTRATION

Jong Yun Kim and Dong-Weon Lee Chonnam National University, KOREA

W169.f CYTOTOXICITY ASSAYS WITH SINGLE CELL RESOLUTION BASED ON SINGLE CELL ADHESION DOT ARRAYS (SCADA)

Maite Garcia-Hernando¹, Alba Calatayud-Sanchez¹, Jaione Etxebarria-Elezgarai¹, Marian M. de Pancorbo¹, Fernando Benito-Lopez¹, and Lourdes Basabe-Desmonts^{1,2} ¹*University of the Basque Country, SPAIN and*

²Basque Foundation of Science. SPAIN

W170.f DIGITAL PHOTOGRAPHY TECHNIQUES IN MICROFLUIDICS: EXPOSURE BRACKETING FOR HIGH DYNAMIC RANGE

MAGNETOPHORETIC CYTOMETRY

Ozgun Civelekoglu, Ningquan Wang, Ruxiu Liu, Mert Boya, Tevhide Ozkaya-Ahmadov, and A. Fatih Sarioglu Georgia Institute of Technology, USA

W171.f ENHANCED RAMAN AND FLUORESCENCE SIGNALS BY HIGH-ASPECT-RATIO NANOCORRUGATED PARTICLES FOR LIQUID-BIOPSY MIRNA DETECTION

Kuan-Hung Chen¹, Meng-Ju Pan¹, and Fan-Gang Tseng^{1,2}

¹ National Tsing Hua University, TAIWAN and ² Academia Sinica, TAIWAN

W172.f HIGH-PERFORMANCE BIOELECTRONIC NOSE BASED ON OLFACTORY RECEPTOR-INCORPORATED NANODISC FOR THE DETECTION OF DEATH-ASSOCIATED ODOR

Hyun Seok Song¹, Heehong Yang², Jungkyun Oh², Jyongsik Janf², and Tai Hyun Park²

¹Korea Institute of Science and Technology (KIST), KOREA and ²Seoul National University, KOREA

W173.f INTEGRATED MICROFLUIDIC DEVICE FOR UNIVERSAL SECRETORY IMMUNOPHENOTYPING STUDIES FOR ADHERENT AND NON-ADHERENT CELLS

Roberto Rodriguez-Moncayo, Rocio J. Jimenez-Valdes, Alan M. Gonzalez-Suarez, and Jose L. Garcia-Cordero Centro de Investigación y de Estudios Avanzados del IPN, MEXICO

W174.f LAB-ON-A-CHIP BASED ELECTROCHEMICAL DETECTION OF FERRITIN

Mayank Garg^{1,2,3}, Martin G. Christensen³, Alexender Iles³, Amit L. Sharma^{1,2}, Nicole Pamme³, and Suman Singh^{1,2} ¹Academy of Scientific and Innovative Research, INDIA, ²Central Scientific Instruments Organization, INDIA, and ³University of Hull, UK

W175.f PRECIPITATION-BASED ENZYMATIC SIGNAL AMPLIFICATION IN HYDROGELS

Nidhi Juthani and Patrick S. Doyle Massachusetts Institute of Technology, USA

Biosensors

W176.f REAL-TIME PROCESSING OF CODE-MULTIPLEXED COULTER SIGNALS BASED ON A TWO-STAGE DEEP LEARNING STRUCTURE

Ningquan Wang, Ruxiu Liu, Norh Asmare, and A. Fatih Sarioglu

Georgia Institute of Technology, USA

W177.f DEVELOPMENT OF IN-AIR EIS SENSOR ENABLING TO DISTINGUISH IMPEDANCE OF CELL POPULATION AND TIGHT-JUNCTION FORMATION AT AIR-LIQUID INTERFACE

Seungbeom Noh and Hanseup Kim University of Utah, USA

W178.f SURFACE PLASMON RESONANCE IMAGING ENHANCED BY DIELECTROPHORESIS AND AC ELECTROOSMOSIS

Marion Costella^{1,3}, Marie Frénéa-Robin¹, Julien Marchalot¹, Julien Moreau², Oleh Andreiev^{1,3}, Paul Charette³, and Michael Canva³

1 Université Lyon, FRANCE, ²CNRS, FRANCE, and

³Université de Sherbrooke, CANADA

W179.f ULTRASENSITIVE MIRNA DETECTION USING TARGET CYCLING AMPLIFICATION AND DIGITAL MICROFLUIDICS

Bin Wang, Zhang You and Dahai Ren *Tsinghua University, CHINA*

W180.f VERTICALLY SHEATHING LAMINAR FLOW-BASED IMMUNOASSAY USING SIMULTANEOUS DIFFUSION-DRIVEN IMMUNE REACTIONS

Amanzhol Kurmashev¹, Seyong Kwon¹, Je-Kyun Park², and Joo H. Kang¹ *Ulsan National Institute of Science and Technology (UNIST), KOREA and *2*Korea Advanced Institute of Science and Technology (KAIST), KOREA

f - Sensors and Detection Technologies

Chemical & Electrochemical Sensors

M180.f A DUAL-GATE ALGAN/GAN HEMT BASED PH SENSOR WITH TUNABLE SENSITIVITY

Qi Cheng, Maojun Wang, Ming Tao, Ruiyuan Yin, Yue Li, Nana Yang, Chengchen Gao, Yilong Hao, Wenhua Xu, and Zhenchuan Yang Peking University, CHINA

M181.f AN ULTRASENSITIVE SENSOR AND ANALYTICAL FRAMEWORK FOR WEARABLE AND MULTIPLEXED DRUG MONITORING APPLICATIONS

Shuyu Lin, Bo Wan<mark>g, Wen</mark>zhuo Yu, an<mark>d Sam</mark> Emaminejad *University of California, Los Angeles, USA*

M182.f "CALCIUM-RESPONSIVE IONIC LIQUID" FOR NAKED EYE-BASED MULTIPLEXED ION DETECTION ON A PDMS MICROCHANNEL ARRAY DEVICE

Tatsumi Mizuta, Yusuke Niwa, Kenji Sueyoshi, Tatsuro Endo, and Hideaki Hisamoto Osaka Prefecture University, JAPAN

Chemical & Electrochemical Sensors

M183.f LIGHT THERAPY DEVICE WITH TRANSEPIDERMAL POTENTIAL-BASED REAL-TIME MONITORING OF SKIN BARRIER RECOVERY

Hajime Konno, Yuina Abe, Shotaro Yoshida, and Matsuhiko Nishizawa *Tohoku University, JAPAN*

M184.f REDUCED GRAPHENE OXIDE-MODIFIED MICROELECTRODE FOR ANTIPSYCHOTIC CLOZAPINE DETECTION IN FINGER-PRICKED BLOOD

Rajendra P. Shukla¹, Remi Cezelles¹, Deanna L. Kelly², and Hadar Ben-Yoav¹

1 Ben-Gurion University. ISRAEL and

²University of Maryland School of Medicine. USA

University of maryland school of medicine, our

M185.f VOLATILE ODORANT DETECTION BY OLFACTORY RECEPTORS FORMED IN A LIPID BILAYER MEMBRANE

Tetsuya Yamada¹, Koki Kamiya¹, Toshihisa Osaki¹, and Shoji Takeuchi¹.²

¹Kanagawa Institute of Industrial Science and Technology, JAPAN and ²University of Tokyo, JAPAN

T180.f A DROPLET MICROFLUIDIC-BASED SENSOR FOR MONITORING RIVER NITRATE/NITRITE CONCENTRATIONS

Adrian M. Nightingale¹, Sammer-ul Hassan¹, Brett M. Warren², Kyriacos Makris², Gareth W.H. Evans¹, Evanthia Papadopoulou², Sharon Coleman^{1,2}, and Xize Niu^{1,2}

¹University of Southampton, UK and ²SouthWestSensor Ltd, UK

T181.f AN ULTRA-LOW POWER HIGHLY-SENSITIVE VAPOR SENSOR BASED ON QUANTUM TUNNELING

Aishwaryadev Banerjee, Rugved Likhite, Hanseup Kim, and Carlos Mastrangelo University of Utah, USA

T182.f DETECTION OF SWELL/SHRINK BEHAVIOR OF STIMULI-RESPONSIVE HYDROGEL BY SINGLE WALLED CARBON NANOTUBE STRAIN SENSOR

Erika Iyama¹, Daisuke Kiriya², and Hiroaki Onoe¹

1 Keio University, JAPAN and 2 Osaka Prefecture University, JAPAN

T183.f MICROFLUIDIC PARTICLE DAM FOR VISUAL AND QUANTITATIVE DETECTION OF LEAD IONS

Gaobo Wang, Lok Ting Chu, Hogi Hartanto, William B. Utomo, Reynard Aaron Pravasta, and Ting-hsuan Chen City University of Hong Kong, HONG KONG

T184.f RAPID ON-SITE DETERMINATION OF TOTAL NITROGEN IN WATER USING A PORTABLE ANALYTICAL SYSTEM

Chen Zhao^{1,3}, Longyan Chen², Guowei Zhong², Qiyang Wu^{1,2}, Jinxia Liu², and Xinyu Liu¹ ¹*University of Toronto, CANADA*, ²*McGill University, CANADA*, and

³University of Pennsylvania, USA

Chemical & Electrochemical Sensors

W181.f AN ELECTROENZYMATIC SENSOR WITH ENHANCED SENSITIVITY AND SELECTIVITY FOR WEARABLE NUTRIENT MONITORING APPLICATIONS

Xuanbing Cheng, Bo Wang, Yichao Zhao, and Sam Emaminejad University of California, Los Angeles, USA

W182.f ANALYTICAL MICROSYSTEM FOR THE POTASSIUM MONITORING IN WINE MAKING PROCESSES

Antonio Calvo-López, Ernest Martinez-Bassedas, Mar Puyol, and Julian Alonso-Chamarro *Autonomous University of Barcelona, SPAIN*

W183.f INELASTIC TUNNELING SPECTROSCOPY MICROMACHINED GAS SENSOR FOR ENVIRONMENTAL APPLICATIONS

Aishwaryadev Banerjee, Rugved Likhite, Hanseup Kim, and Carlos H. Mastrangelo University of Utah, USA

W184.f MICROFLUIDICS UNDER THE SEA: A LAB-ON-CHIP SENSOR FOR *IN-SITU* MEASUREMENTS OF OCEAN ALKALINITY

Allison Schaap, Stathys Papadimitriou, Edward Mawji, Socratis Loucaides, and Matthew Mowlem National Oceanography Centre, UK

W185.f THREE DIMENSIONAL CARBON MULTIELECTRODE ARRAYS FOR ELECTROCHEMICAL DETECTION OF DOPAMINE IN LOW CONCENTRATIONS

Joonas J. Heikkinen, Noora Isoaho, Ville Jokinen, and Sami Franssila *Aalto University, FINLAND*

f - Sensors and Detection Technologies

Label-Free Detection

M186.f ABSORBANCE SPECTRA-ACTIVATED DROPLET SORTING FOR HIGH-THROUGHPUT LABEL-FREE CHEMICAL IDENTIFICATION

Todd A. Duncombe¹, Aaron Ponti¹, Alice Maurer², Florian Seebeck², and Petra S. Dittrich¹ ¹ETH Zürich, SWITZERLAND and ²University of Basel, SWITZERLAND

M187.f IMPEDANCE SPECTROSCOPY AND OPTICAL IMAGING FOR AUTOMATED MULTIMODAL PALYNOLOGY

Riccardo Reale¹, Adele De Ninno¹², Maria A. Brighetti¹, Luca Businaro², Alessandro Travaglini¹, Paolo Bisegna¹, and Federica Caselli¹ ¹*University of Rome Tor Vergata, ITALY and* ²*CNR Institute for Photonics and Nanotechnologies, ITALY*

IMPEDANCE-BASED QUANTIFICATION OF PARASITIC VOLTAGE

M188.f

DROPS FOR OPTIMIZING AC ELECTROKINETIC TRAPPING
Vahid Farmehini¹, Walter Varhue¹, Armita Salahi¹, Jaka Camazar²,
Alexandra Hyler², Rafael Davalos², and Nathan Swami¹

1 University of Virginia, USA and ² Virginia Tech, USA

Label-free Detection

M189.f SERS DETECTION OF AB40 AND ZN2+-AB40 PEPTIDES ON AN ELECTRODE NANOGAP ENABLED PLATFORM

Katrin H.P. Vu^{1,2}, Ming-Che Lee^{2,3}, Gerhard H. Blankenburg^{2,4}, Yun-Ru Chen^{2,3}, Ming-Lee Chu², Andreas Erbe⁵, Leonardo Lesser-Rojas^{6,7}, and Chia-Fu Chou²

¹ National Tsing Hua University, GERMANY, ² Academia Sinica, TAIWAN, ³ National Defense Medical Center, TAIWAN, ⁴ National Taiwan University, TAIWAN, ⁵ Norwegian University of Science and Technology, NORWAY, ⁶ Centro de Investigación en Ciencias Atómicas, COSTA RICA, and ⁷ University of Costa Rica, COSTA RICA

T185.f A HIGH THROUGHPUT ELECTRONIC CELL ANALYZER FOR CELL MECHANOPHENOTYPING

Norh Asmare, A K M Arifuzzman, Ningquan Wang, Mert Boya, Rixiu Liu, and A. Fatih Sarioglu Georgia Institute of Technology, USA

T186.f DIELECTROPHORETIC DETECTION OF IMATINIB RESISTANCE IN K562 CELLS USING A LAB-ON-A-CHIP SYSTEM

Yağmur Demircan Yalçin^{1,2}, Taylan Berkin Töral², Sertan Sukas², Ender Yıldırım^{2,4}, Özge Zorlu², Ufuk Gündüz¹, and Haluk Külah¹ * Middle East Technical University, TURKEY, * Mikro Biyosistemler Electronics Inc., TURKEY, * METU MEMS Center, TURKEY, and * Çankaya University, TURKEY

T187.f LABEL-FREE ELECTRICAL IMPEDANCE SPECTROSCOPY BASED SENSOR-IN-A-TUBE FOR SINGLE CELLS ANALYSIS Aleksandr Egunov¹, Mariana Medina-Sánchez¹,

Dmitriy D. Karnaushenko¹, Nicole Kretschmann², Katja Akgün², Tjalf Ziemssen², Daniil Karnaushenko¹, and Oliver G. Schmidt^{1,3} ¹Leibnitz IFW Dresden, GERMANY, ²Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, GERMANY, and ³Chemnitz University of Technology, GERMANY

T188.f NON-INVASIVE DETECTION OF NEPHROTOXICITY ON A PROXIMAL TUBULE ON-A-CHIP BY TRANS-EPITHELIAL/TRANS-ENDOTHELIAL ELECTRICAL RESISTANCE MEASUREMENTS

Ryohei Ueno¹, Ramin B. Sadeghian¹, Yuji Takata¹, Kiyotaka Tsuji², and Ryuji Yokokawa¹ ¹ Kyoto University, JAPAN and ² Panasonic Corporation, JAPAN

T189.f TOWARDS REAL-TIME MULTIPARAMETRIC IMPEDANCE CYTOMETRY

John McGrath¹, Riccardo Reale², Carlos Honrado¹, Paolo Bisegna², Nathan Swami¹, and Federica Caselli²

¹ University of Virginia, USA and ² University of Rome Tor Vergata, ITALY

W186.f DETECTION OF STEROID HORMONES VIA DIRECT QUENCHING OF QUANTUM DOTS

Ye Liu, Bo Wu, Yi-C<mark>hieh Wang, and Li-Jing L</mark>arry Cheng *Oregon State University, USA*

Label-free Detection

W187.f FAST REACTION SCREENING COMBINING SEGMENTED FLOW MICROFLUIDICS AND SURFACE ENHANCED RAMAN SPECTROSCOPY

Alexander Mendl¹, Michael Köhler², and Dušan Boskovic¹

¹Fraunhofer ICT, GERMANY and ²TU Ilmenau, GERMANY

W188.f LABEL-FREE NANOPARTICLE DETECTION IN 10^2 nm CHANNEL BY LITILIZING PHOTOTHERMAL OPTICAL DIFFRACTION

Yoshiyuki Tsuyama and Kazuma Mawatari *University of Tokyo, JAPAN*

W189.f SEPARATION OF MITOCHONDRIAL DISEASED CELLS BASED ON ORGANELLE-LEVEL DIFFERENCE USING A DEP MICROFLUIDIC SYSTEM

Pei-Yin Chi^{1,2}, Ting-Wei Chuang¹, Tzu-Tsai Chu¹, Chia-Tzu Kuo¹, Yu-Ting Wu², Vahid Farmehini⁴, Dar-Bin Shieh⁵, Fan-Gang Tseng², Yau-Huei Wei³, Nathan Swami⁴, and Chia-Fu Chou¹

¹Academia Sinica, TAIWAN, ²National Tsing Hua University, TAIWAN,

³Changhua Christian Hospital, TAIWAN, ⁴University of Virginia, USA, and ⁵National Cheng-Kung University, TAIWAN

W190.f SINGLE-CELL MICROSCOPIC RAMAN SPECTROSCOPY FOR RAPID MICROBIAL DETECTION

Daisuke Onoshima, Kentaro Uchida, Hiroshi Yukawa, Kenji Ishikawa, Masaru Hori, and Yoshinobu Baba *Nagoya University, JAPAN*

f - Sensors and Detection Technologies

Optical Detection & Imaging

M190.f OPTOFLUIDIC CYTOMETRY FOR BACTERIA DETECTION

Shilun Feng¹, Patricia Y. Liu¹, Jingbo Zhang¹, Jiaqing Yu¹, Fangyuan Sun¹, Zhenyu Li^{1,2}, Yi Zhang¹, Nguyen K. Truc¹, Yap P.H. Eric¹, Wee Ser¹, and Aiqun Liu¹

¹Nanyang Technological University, SINGAPORE and

²Peking University, BEIJING

M191.f A NEW MICROFLUIDIC MONITORING METHOD USING INFRARED SENSOR UNIT

Thinh H. Nguyen¹, Alex Milleman¹, Sthitodhi Ghosh¹, Vinitha TU¹, Bon-Ki Ku²,and Chong H. Ahn¹ ¹University of Cincinnati, USA and ²CDC-NIOSH, USA

M192.f DEVELOPMENT OF A HIGH SPATIO-TEMPORAL RESOLUTION ELECTROCHEMICAL IMAGING SYSTEM USING A CLOSED BIPOLAR ELECTRODE ARRAY

Tomoki Iwama, Kumi Y. Inoue, Hiroya Abe, Tomokazu Matuse, and Hitoshi Shiku Tohoku University, JAPAN

M193.f HIGH-THROUGHPUT OPTOFLUIDIC 3D CELL IMAGING

Masashi Ugawa^{1,2} and Sadao Ota¹

1 University of Tokyo, JAPAN and ² RIKEN, JAPAN

Optical Detection & Imaging

LENSFREE EARLY DETECTION OF BACTERIAL COLONIES M194.f

Vincent Haguet¹, Dorothée Balle¹, and Gaëlle Saint-Auret² ¹CEA Grenoble, FRANCE and ²GENEL SAS, FRANCE

M195.f OPEN SOURCE LAB AUTOMATION FOR HIGH THROUGHPUT MICROFLUIDIC MICROBIOLOGY

Sarah H. Needs and Alexander D Edwards University of Reading, UK

OPTICAL INJECTION OF FLUORESCENCE MICROSENSOR TO A M196.f SPECIFIC CELL BY OPTICAL TWEEZERS AND LOCAL HEATING

Hisataka Maruyama, Ryo Yanagawa, and Fumihito Arai Nagova University, JAPAN

PHOTOTHERMAL DETECTION PROBE USING OPTICAL FIBER M197.f

Hisashi Shimizu and Shoii Takeuchi University of Tokyo, JAPAN

PORTABLE FLUORESCENCE POLARIZATION ANALYZER FOR M198.f ON-SITE MULTISAMPLE IMMUNOASSAY

Ayano Nakamura¹, Osamu Wakao¹, Ken Satou², Mitsutoshi Aoyagi³, Kazuhiko Nishimura³, Chikaaki Mizokuchi², Ken Sumiyoshi², Masatoshi Maeki1. Akihiko Ishida1. Hirofumi Tani1. Koji Shigemura², Akihide Hibara⁴, and Manabu Tokeshi¹ ¹Hokkaido University, JAPAN, ²Tianma Japan, Ltd., JAPAN, ³Hokkaido Institute of Public Health, JAPAN, and

⁴Tohoku University, JAPAN

M199.f ULTRA-SMALL FOUR-EMISSION-POINT SPECTRAL-DETECTION SYSTEM BY SEVEN-DICHROIC-MIRROR ARRAY

Takashi Anazawa1 and Motohiro Yamazaki2 1 Hitachi, Ltd., JAPAN and

²Hitachi High-Technologies Corporation, JAPAN

A DEEP LEARNING ENABLED FIELD-PORTABLE CELL ANALYZER T190.f

Dongmin Seo¹, Sanghoon Shin¹, Haechang Yang¹, Seungmin Myeong1, Euijin Han1, Sangwoo Oh2, Moonjin Lee2, and Sungkyu Seo1

¹Korea University, KOREA and

²Korea Research Institute of Ships & Ocean Engineering, KOREA

T191.f CONTINUOUS GLUCOSE MONITORING INSIDE SPHEROIDS BY MESOPOROUS FLUORESCENT MICROPARTICLES

Jun Sawayama and Shoji Takeuchi University of Tokyo, JAPAN

T192.f HEAVY METALS MICROANALYSER FOR WATER QUALITY MONITORING BASED ON SELECTIVE CARBON DOTS FLUORESCENCE OUENCHING

Alex Pascual-Escó, Miguel Berenguel-Alonso, Julián Alonso-Chamarro, and Mar Puyol Universitat Autònoma de Barcelona, SPAIN

Optical Detection & Imaging

T193.f IN-SITU MONITORING OF ESCHERICHIA COLI GROWTH ON DIGITAL MICROFLUIDICS BY OPTICAL CHEMOSENSORS FOR MICROBIAL CELL METABOLISM STUDIES

Wenting Qiu and Stefan Nagl

Hong Kong University of Science and Technology, HONG KONG

T194.f LAB-ON-A-CD CAPABLE OF CONTINUOUS FLUORESCENCE MEASUREMENT

Kazuhiro Morioka¹, Takuya Nojo², Akihide Hemmi³, Norio Teshima⁴, Tomonari Umemura¹, Shungo Kato²,

Katsumi Uchiyama², and Hizuru Nakajima²

- ¹Tokyo University of Pharmacy and Life Sciences, JAPAN,
- ²Tokyo Metropolitan University, JAPAN,
- ³Mebius Advanced Technology Ltd., JAPAN, and
- ⁴Aichi Institute of Technology, JAPAN

T195.f NANOLITRE-SCALE CAPILLARY CELL WITH EXTENDED EFFECTIVE OPTICAL PATH AND REDUCED STRAY LIGHT FOR ABSORPTION PHOTOMETRIC DETECTION

Jozef Šesták, Josef Planeta, and Vladislav Kahle Czech Academy of Sciences, CZECH REPUBLIC

T196.f PEROVSKITE NANOCRYSTAL – HYFLON AD 60 OPTICAL THERMAL SENSORS FOR TEMPERATURE IMAGING IN DIGITAL MICROFLUIDICS

Zhangdi Lu¹, Yanxiu Li², Wenting Qiu¹, Andrey L. Rogach², and Stefan Nagl¹

¹Hong Kong University of Science and Technology, HONG KONG and ²City University of Hong Kong, HONG KONG

T197.f PLASMON-BASED DETECTION OF TOXICITY BIOMARKERS DERIVED FROM MICROPLASTICS-TREATED MODEL ANIMALS

Seungki Lee, Tae Ho Kang, Jinhee Choi, and Inhee Choi University of Seoul, KOREA

T198.f SPATIALLY HOMOGENEOUS ILLUMINATION BY A COMPACT OPTICAL ARCHITECTURE

Vincent Haguet and Bernard Sartor CEA Grenoble, FRANCE

W191.f A MICROFLUIDIC CHIP WITH AN INTEGRATED MICRO-HEATER AND LUMINESCENT TEMPERATURE SENSOR FOR SPATIALLY RESOLVED ANALYSIS OF DNA MELTING CURVES

Xuyan Lin, Chenyu Cui, and Stefan Nagl Hong Kong University of Science and Technology, HONG KONG

W192.f COLLOIDAL PHOTONIC CRYSTAL ARRAY CHIP BASED ON NANOPARTICLE SELF-ASSEMBLY ON PATTERNED HYDROPHOBIC SURFACE FOR SIGNAL-ENHANCED FLUORESCENT ASSAY

Rui Guo, Dan-Ni Wang, Yun-Yun Wei, Ying-Zhi Zhang, Chun-Guang Yang, and Zhang-Run Xu Northeastern University, CHINA

Optical Detection & Imaging

W193.f HIGH THROUGHPUT SIZE-DETERMINATION AND MULTIPLEXED FLUORESCENCE ANALYSIS OF SINGLE BIOLOGICAL PARTICLES IN A NANOFLUIDIC DEVICE

Quenting Lubart¹, Sune Levin¹, Stephan Block², Silver Jõemetsa¹, Sriram KK¹, Fredrik Höök¹, Marta Bally³, Elin K. Esbjörner¹, and Fredrik Westerlund¹

- ¹Chalmers University of Technology, SWEDEN,
- ²Freie Universität Berlin, GERMANY, and
- ³Umeå University, SWEDEN

W194.f INTEGRATED GLASS MICROPRISMS' MATRIX FOR LIGHT COUPLING AND OPTICAL SENSING SYSTEMS IN LAB-ON-A-CHIP PLATFORMS

Aleksandra Pokrzywnicka, Patrycja Śniadek, and Rafal Walczak Wrocław University of Science and Technology, POLAND

W195.f MACHINE LEARNING BASED IMAGE ANALYSIS OF OPTICALLY DETECTED NEURONS CULTURED IN-VITRO ON HIGH-DENSITY MICRO-PILLAR SUBSTRATES AND CHIPS

Ana Bedalov^{1,2}, Tihana Marcluš¹, and Damir Sapunar¹

¹University of Split, CROATIA and ²Bedalov d.o.o for Research,
Development, Innovation and Consulting, CROATIA

W196.f MAGNETIC LEVITATION-BASED PROTEIN DETECTION USING LENSLESS DIGITAL INLINE HOLOGRAPHIC MICROSCOPY

Sena Yaman, Kerem Delikoyun, and H. Cumhur Tekin Izmir Institute of Technology, TURKEY

W197.f PHOTO-THERMALLY ENHANCED LIGHT SCATTERING METHOD FOR NANO PARTICLE DETECTION

Dan Maeda, Kazuma Mawatari, and Takehiko Kitamori *University of Tokyo, JAPAN*

W198.f PORTABLE 3D PRINTED COLORIMETRIC SENSOR FOR REMOTE SOIL MEASUREMENT

Sepideh Keshan Balavandy¹, Fernando Maya¹, Ashley Townsend¹, Kimberley Frederick², and Michael C. Breadmore¹

1 University of Tasmania, AUSTRALIA and 2 Skidmore College, USA

W199.f REGULATION OF LIPID DROPLETS IN LIVE PREADIPOCYTES USING OPTICAL DIFFRACTION TOMOGRAPHY AND RAMAN SPECTROSCOPY

Patricia Y. Liu, Chao M. Hsieh, Lip K. Chin, Yuzhi Shi, Shilun Feng, Jingbo Zhang, and Wee Ser Nanyang Technological University. SINGAPORE

f - Sensors and Detection Technologies

Physical Sensors

M200.f BIOMECHANICAL STUDY OF LIVING CAENORHABDITIS ELEGANS EMBRYOS USING CELLULAR FORCE MICROSCOPY

Roger Krenger¹, Jan T. Burri², Thomas Lehnert¹, Bradley J. Nelson², and Martin A.M. Gijs¹

¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and ²ETH Zürich, SWITZERLAND

Physical Sensors

M201.f 10-µm-THICK ON-CHIP TRANSPARENT FLOW VELOCITY SENSOR FABRICATED BY FEMTOSECOND LASER

Yaxiaer Yalikun^{1,2}, Pan Kaige¹, Yo Tanaka^{2,3}, and Yoichiroh Hosokawa¹

¹Nara Institute of Science and Technology, JAPAN, ²RIKEN, JAPAN, and ³Osaka University, JAPAN

M202.f SURFACE-PATTERNED SILICON CANTILEVER INTEGRATED WITH STRAIN SENSOR TO EVALUATE CONTRACTILE BEHAVIORS IN REAL TIME

Mingming Dong, Nomin-Erdene Oyunbaatar, Dong-Su Kim, and Dong-Weon Lee Chonnam National University. KOREA

T199.f A LIQUID-METAL ENCAPSULATED BAND-AID LIKE SENSOR FOR NON-INVASIVE MONITORING OF FONTANELLE PRESSURE OF INFANTS

Ziyi Huang, Baoyue Zhang and Jaewon Park Southern University of Science and Technology, CHINA

T200.f LOW SAMPLE CONSUMING, PORTABLE VISCOMETER BASED ON LAPLACE-INDUCED-PUMPING AND REFRACTION FOR HEMORHEOLOGY

Matthias Hermann¹, Kyle Bachus¹, Graham Gibson², and Richard Oleschuk¹

¹ Queen's University, CANADA and ² CMC Microsystems, CANADA

T201.f REAL-TIME SENSING OF OSTEOCLAST ACTIVITY ON A MICROFLUIDIC CHIP BY ELECTRICAL IMPEDANCE

Alexander P.M. Guttenplan¹, Marijn Lemmens², Gilles Oudebrouckx², Daniel de Melo Pereira¹, Hoon Suk Rho¹, Zeinab Tahmasebi Birgani¹, Stefan Giselbrecht¹, Roman K. Truckenmüller¹, Ronald Thoelen², and Pamela Habibovic¹

¹Maastricht University, THE NETHERLANDS and

²Hasselt University, BELGIUM

T202.f SURFACE-TEXTURED PHOTOSENSITIVE POLYMER THIN FILM AS NEW CRACK-BASED STRAIN SENSOR TO MONITOR HUMAN MOTION

Jongsung Park¹, Dong-Su Kim¹, Ji-Kwan Kim², and Dong-Weon Lee¹

1 Chonnam National University, KOREA and ² Gwangju University, KOREA

W200.f LIQUID METAL-EMBEDDED MICROFLUIDIC PRESSURE SENSOR FOR REAL-TIME MONITORING

Kelu Peng¹, Sunghy<mark>un Cho²</mark>, Junyi Yao¹, Younghak Cho³, Hyunsoo Kim², and Jaewon Park¹

¹Southern University of Science and Technology, CHINA.

²Korea Institute of Machinery and Materials (KIMM), KOREA, and

³Seoul National University of Science and Technology, KOREA

Physical Sensors

W201.f MEASURING MAGNETIC SUSCEPTIBILITY OF PARAMAGNETIC SOLUTION USING DIAMAGNETIC REPULSION OF POLYMER MICROPARTICLES

Bong Hwan Jang, Seyong Kwon, and Joo H. Kang Ulsan National Institute of Science and Technology (UNIST), KOREA

W202.f SINGLE BACTERIA DETECTION VIA PIEZOELECTRIC SUSPENDED MICROCHANNEL RESONATORS

Annalisa De Pastina^{1,2}, Damien Maillard¹, Birge Özel Duygan³, Jan Roelof Van Der Meer³, and Luis Guillermo Villanueva¹

¹École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND,

²Trinity College Dublin, IRELAND, and

3 University of Lausanne, SWITZERLAND

f - Sensors and Detection Technologies

Others

M203.f FACILE FABRICATION OF FULLY INTEGRATED PAPER-BASED

ORIGAMI MICRODEVICE FOR COLORIMETRIC DISCRIMINATION OF VIABLE PATHOGENS

Phuoc Tung Trieu, Woo Ri Chae and Nae Yoon Lee Gachon University, KOREA

T203.f INKJET 3D-PRINTED MICROCANTILEVER NANOGRAM RESOLUTION MASS SENSOR

Patrycja Sniadek, Bartosz Kawa, and Rafal Walczak Wrocław University of Science and Technology, POLAND

W203.f DISPOSABLE MULTI-SENSORS FOR DIRECT DETECTING PH, CONDUCTIVITY AND TEMPERATURE OF SALIVA IN MOUTH

Wei-Sin Kao, Wei-Hsing Yen, Yu-Wen Hung, and Che-Hsin Lin National Sun Yat-sen University, TAIWAN

W204.f PATTERN CLASSIFICATION AND SEGMENTATION IN MULTIDEMENSIONAL DNA CONCENTRATION SPACES BY SYNTHETIC CHEMICAL REACTION NETWORK

Shu Okumura¹, Guillaume Gines², Yannick Rondelez², Teruo Fujii¹, and Anthony Genot¹

¹University of Tokyo, JAPAN and ²PSL Research University, FRANCE

g - Other Applications of Microfluidics

Artificial Intelligence and Microfluidics

M204.g DEEP CONVOLUTIONAL NEURAL NETWORKS FOR VIABILITY ANALYSIS DIRECTLY FROM CELL HOLOGRAMS CAPTURED USING LENSLESS HOLOGRAPHIC MICROSCOPY

Kerem Delikoyun, Ersin Cine, Muge Anil-Inevi, Engin Ozcivici, Mustafa Ozuysal, and H. Cumhur Tekin Izmir Institute of Technology, TURKEY

T204.g DEEP LEARNING ANALYSIS OF NEUTROPHIL NUCLEAR MORPHOLOGY DURING NETOSIS USING A MICROFLUIDIC DEVICE

Alan M. Gonzalez-Suarez, Roberto Rodriguez-Moncayo, Jose A. Hernandez-Ortiz, and Jose L. Garcia-Cordero Centro de Investigacion y de Estudios Avanzados del IPN, MEXICO

g - Other Applications of Microfluidics

Fuel Cells

M205.g DRYING CAPABILITY OF RMFC MICO-CHANNEL EVAPORATOR WITH IMPROVED FLOW DISTRIBUTION, GAS VENTING MANIFOLD AND ARTIFICIAL CAVITIES

Hung-Yu Chen¹, Fan-Gang Tseng^{1,2}, and Chin Pan³

¹National Tsing Hua University, TAIWAN, ²Academia Sinica, TAIWAN and

³City University of Hong Kong, HONG KONG

W205.g A HIGH HYDROGEN CONVERSION AND HIGH-TEMPERATURE CATALYTIC HYDROGEN MICRO-CHIP COMBUSTOR APPLIED TO THERMAL MANAGEMENT FOR METHANOL REFORMER

Ming-Jyun Li¹, Shang-Yun Huang¹, and Fan-Gang Tseng¹.² ¹*National Tsing Hua University, TAIWAN and* ²*Academia Sinica, TAIWAN*

g - Other Applications of Microfluidics

Microfluidics for X-Ray and e-Beam Applications

M206.g DROPLET TRIGGERING FOR SERIAL FEMTOSECOND CRYSTALLOGRAPHY USING 3D-PRINTED MICROFLUIDICS

Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Sahir Gandhi, Sebastian Quintana, Ana Egatz-Gomez, and Alexandra Ros Arizona State University, USA

M207.g TRACKING TRANSIENT CHANGES ON THE MILLI-SECOND TIME-SCALE: X-RAY SPECTROSCOPY AND MICROFLUIDIC MIXING

Thomas Kroll¹, Leland B. Gee², Diego A. Huyke², Augustin Braun², Michael Mara², Matthew James², Ashwin Ramachandran², Dimosthenis Sokaras¹, Uwe Bergmann¹, Edward I. Solomon², Daniel P. DePonte¹, and Juan G. Santiago²

1SLAC National Accelerator Laboratory, USA and

²Stanford University, USA

Microfluidics for X-Ray and e-Beam Applications

T205.g A THREE-DIMENSIONAL MICROFLUIDIC MIXER WITH INDEPENDENTLY ADJUSTABLE MIXING AND PROBING REGIONS

Diego A. Huyke¹, Ashwin Ramachandran¹, Thomas Kroll², Daniel P. Deponte², and Juan G. Santiago¹ ¹Stanford University. USA and

²SLAC National Accelerator Laboratory, USA

T206.g SAMPLE CONSUMPTION REDUCTION FOR SERIAL CRYSTALLOGRAPHY USING WATER-IN-OIL DROPLETS

Austin Echelmeier¹, Jorvani Cruz Villarreal¹, Daihyn Kim¹, Sahir Gandhi¹, Ana Egatz-Gomez¹, Darren Thifault¹, Jesse D. Coe¹, Gerrit Brehm², Caleb Madsen¹, Sebastian Quintana¹, Saša Bajt⁴, Marc Messerschmidt^{1,3}, Jose Domingo Meza-Aguilar¹, Dominik Oberthüer⁴, Max O. Wiedorn⁴, Holger Fleckenstein⁴, Sabine Botha¹, Derek Mendez¹, Juraj Knoska⁴, Jose Martin Garcia¹, Hao Hu1, Stella Lisova1, Aschkan Allah Gholi4, Yaroslav Gevorkov4, Kartik Ayyer4, Steve J. Aplin4, Helen M. Ginn5, Heinz Graafsma4, Andrew J. Morgan⁴, Dominic Greiffenberg⁶, Alexander Klujev⁴, Torsten Laurus⁴, Jennifer Poehlsen⁴, Ulrich Trunk⁴, Filipe R.N.C. Maia⁷, Davide Mezza⁶, Raimund Fromme¹, Britta Weinhausen³, Grant Mills³, PatrikVagovic³, Yoonhee Kim³, Joachim Schulz³, Katerina Döerner³, Jolanta Sztuk-Dambietz3. Manuela Kuhn4. Thomas D. Grant8. Thomas A. White⁴, Valerio Mariani⁴, Anton Barty⁴, Adrian P. Mancuso³, Uwe Weierstall¹, John C.H. Spence¹, Henry N. Chapman⁴, Nadia A. Zatsepin¹, Petra Fromme¹, Richard A. Kirian¹, and Alexandra Ros1

¹Arizona State University, USA, ²Göttingen University, GERMANY, ³European XFEL, GERMANY, ⁴Deutsches Elektronen-Synchrotron (DESY), GERMANY, ⁵University of Oxford, UK, ⁶Paul Scherrer Institute, SWITZERLAND, ⁷University of Uppsala, SWEDEN, and ⁸University of Buffalo, USA

T207.9 UNDERSTANDING THE LIPID NANOPARTICLES STRUCTURE DYNAMICS USING A TIME-RESOLVED SAXS MEASUREMENT

Masatoshi Maeki¹, Niko Kimura¹, Kazuki Shimizu², Kento Yonezawa², Nobutaka Shimizu², Akihiko Ishida¹, Hirofumi Tani¹, and Manabu Tokeshi¹

1 Hokkaido University, JAPAN and

²High Energy Accelerator Reseaerch Organization, JAPAN

W206.g CRYO-MICROFLUIDIC DEVICES ENABLE MILLISECOND TIME-CORRELATION BETWEEN LIVE-IMAGING AND CRYO-ELECTRON MICROSCOPY IN CAENORHABDITIS ELEGANS

Marie Fuest¹, Miroslava Schaffer², Giovanni Marco Nocera¹, Rodrigo I. Galilea-Kleinsteuber¹, Michael Heymann², Jürgen M. Plitzko², and Thomas P. Burg^{1,3}

¹ Max Planck Institute for Biophysical Chemistry, GERMANY,

²Max Planck Institute of Biochemistry, GERMANY, and

³ Technische Universität Darmstadt, GERMANY

Microfluidics for X-Ray and e-Beam Applications

W207.g TIME-RESOLVED STRUCTURE DETERMINATION VIA RAPID MIXING MICROFLUIDICS

Martin Trebbin^{1,2} and Diana C.F. Monteiro¹

¹ State University of New York, Buffalo, USA and

² Hauptman-Woodward Medical Research Institute, USA

g - Other Applications of Microfluidics

Power Devices

W208.g ION BASED PRESSURE DRIVEN ELECTRIC POWER GENERATOR USING MICRO/NANO GLASS POROUS DEVICE

Yo Tanaka¹, Satoshi Amaya¹, Wataru Nagafuchi¹, Norihiro Kamamichi², and Yaxiaer Yalikun¹ ¹RIKEN, JAPAN and ²Tokyo Denki University, JAPAN

g - Other Applications of Microfluidics

Others

M208.g A MICRO-FLUIDIC DEVICE TO MEASURE ANTIOXIDATIVE CAPACITY OF TEA CATECHINS

Alexandra Homsy¹, Laure Jeandupeux¹, Marzena Walaszczyk¹, Claudio Prieur¹, Frédéric Truffer¹, Martial Geiser¹, Isabelle Udrisard¹, Agnieszka Kosinska Cagnazzo¹, Wilfried Andlauer¹, and Harry J. Whitlow²

¹HES-SO, SWITZERLAND and ²University of Louisiana, USA

M209.g DEVELOPMENT OF CONTROLLED RELEASE TABLET REAGENTS EMBEDDED COMPACT NUTRIENT ANALYZER FOR CONTINUOUS MONITORING OF NUTRIENT CONTENT IN CROP BODY

Toshihiro Kasama^{1,4}, Naoki Hirohama^{1,4}, Yoshishige Endo^{1,4}, Takumi Okamoto^{2,4}, Tetsushi Koide^{2,4}, Chiharu Sone^{3,4}, Masashi Komine^{3,4}, Yukio Yaji^{3,4}, Atsushi Ogawa^{3,4}, and Ryo Miyake^{1,4}

¹University Tokyo, JAPAN, ²Hiroshima University, JAPAN,

3 Akita Prefectural University, JAPAN, and

⁴Japan Science and Technology Agency (JST), JAPAN

T208.g ARTIFICIAL PHEROMONE EFFECT IMPOSED ON REAL LIVING MICROALGAE CELLS CONFINED IN A MICROCHIP WITH OPTICAL FEEDBACK SYSTEM

Kazunari Ozasa¹, June Won², Simon Song², and Mizuo Maeda¹

RIKEN, JAPAN and ²Hanyang University, KOREA

T209.g THE UNIVERSAL LAB-ON-CHIP PLATFORM FOR BIO-NANOSATELLITE

Agnieszka Podwin¹, Adrianna Graja^{1,2}, Dawid Przystupski³, Danylo Lizanets^{1,4}, Jan A. Dziuban¹, and Rafal Walczak¹ ¹ Wrocław University of Science and Technology, POLAND, ²SatRevolution S.A., POLAND, ³ Wrocław Medical University, POLAND, and ⁴Lviv Polytechnic National University, UKRAINE

Others

W209.g CONTINUOUS FLOW ANALYSIS OF ATMOSPHERIC ICE-NUCLEATING PARTICLES IN THE EASTERN MEDITERRANEAN

Mark D. Tarn¹, Sebastien N.F. Sikora¹, Grace C.E. Porter¹,
Bethany V. Wyld¹, Naama Reicher², Matan Alayof²,
Alexander D. Harrison¹, Yinon Rudich², Jung-uk Shim¹,
and Benjamin J. Murray¹

1 University of Leeds, UK and ² Weizmann Institute of Science, ISRAEL

W210.9 MEASURING THE NUCLEATION KINETICS OF ARAGONITE USING A SELF-DIGITIZATION MICROFLUIDIC CHIP

Zongwei Zhang, Yuan Gao, Shunbo Li, and Gang Li *Chongqing University, CHINA*

h - Late News

Cells, Organisms and Organs on a Chip

M210.h 3D CULTURE STRATEGY TO ENHANCE HAIR INDUCTIVE POTENTIAL OF HUMAN HAIR FOLLICLE DERIVED DERMAL PAPILLA CELLS

Seongkyun Choi, Jinchul Ahn, Ji Hun Yang, and Seok Chung Korea University, KOREA

M211.h CONTROLLED GIANT VESICLE ASSEMBLY AND MANIPULATION USING MEMBRANE DISPLACEMENT TRAPS

Zhu Chen¹, Hesam Babahosseini¹,², Supriya Padmanabhan¹, Tom Misteli², and Don L. DeVoe¹

¹University of Maryland, College Park, USA and

²National Institutes of Health, USA

M212.h DUAL-FLOW MICROFLUIDIC DEVICE FOR MODELLING BIOLOGICAL BARRIER SYSTEMS

Lydia Baldwin, Alex Iles, John Greenman, Nicole Pamme, and Charlotte E. Dyer *University of Hull, UK*

M213.h HYDROGEL-BASED SEALED MICROCHAMBERS FOR SIMPLE AND COST-EFFECTIVE CELL CULTURE AND DRUG TESTING

Shotaro Yoshida, Kensuke Sumomozawa, and Matsuhiko Nishizawa Tohoku Univerisity, JAPAN

M214.h INTEGRATION OF ON-CHIP CLUSTER PURIFICATION AND COMPARTMENTALIZATION FOR RNA-SEQ ANALYSIS OF CLUSTERS

Hiroaki Saito¹, Soo Hyeon Kim¹, Issei Tsuchiya¹, Satoi Nagasawa¹, Masahide Seki¹, Yusuke Komazaki¹, Toru Torii², Yutaka Suzuki¹, and Teruo Fujii¹

¹University of Tokyo, JAPAN and ²National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

M215.h REPEATED SINGLE CELL CYTOMETRY IN AN OPTOFLUIDIC CHIP

Gregory A. Cooksey¹, Paul N. Patrone¹, Nikita Podobedov², Stephen E. Meek³, and Jason A. Hsu⁴

¹National Institute of Standards and Technology (NIST), USA,

²Columbia University, USA, ³Montgomery College, USA, and

⁴Montgomery Blair High School, USA

Cells, Organisms and Organs on a Chip

M216.h WRINKLE TEXTURE GUIDED CELL GROWTH ORIENTATION

Bing-Cheng Jiang and Ya-Yu Chiang National Chung-Hsing University, TAIWAN

T210.h A MICROFLUIDIC DEVICE FOR TESTING STATIC AND DYNAMIC, IN VIVO LIKE, DRUG CONCENTRATION EFFECTS ON CANCER CELLS

Job Komen 1 , Eiko Y. Westerbeek 1,2 , Andries D. van der Meer 1 , and Albert van den Berg 1

¹University of Twente, THE NETHERLANDS and

²Vrije Universiteit Brussel, BELGIUM

T211.h CIRCULATING TUMOR CELL ISOLATION FROM CLINICAL SAMPLES UTILIZING A LATERAL FILTER ARRAY MICROFLUIDIC DEVICE

Pablo J. Dopico¹, Kangfu Chen¹, Jose Varillas¹, Valber Pedrosa², Thomas J. George¹, and Z. Hugh Fan¹

1 University of Florida, USA and Sao Paulo State University, BRAZIL

T212.h DEVELOPMENT OF A MICROFLUIDIC PLATFORM FOR INDUCTION OF ANGIOGENESIS FROM A VASCULARIZED MICROTISSUE

Wen-Chih Yang, Che-Yu Lin, Wei-Wen Liu, Pai-Chi Li, and Yu-Hsiang Hsu National Taiwan University. TAIWAN

T213.h ENGINEERED 3D VASCULARIZED NEUROSPHERE-DERIVED FROM INDUCED NEURAL STEM CELL IN AN INJECTION-MOLDED MICROFLUIDIC ARRAY

Youngtaek Kim, Nari Shin, Jihoon Ko, Jungho Ahn, Kyung-Sun Kang, and Noo Li Jeon Seoul National University, KOREA

T214.h IN VITRO MICROFLUIDICS-BASED BLOOD-BRAIN BARRIER MODEL WITH IN-LINE TEER MEASUREMENT

Kai-Hong Tu and Ya-Yu Chiang National Chung Hsing University, TAIWAN

T215.h INTESTINE-ON-A-CHIP FOR ANTICANCER NANOPARTICLE TESTING

Oihane Mitxelena-Iribarren $^{\rm 1.2},$ Claudia Olaizola $^{\rm 2},$ Sergio Arana $^{\rm 1.2},$ and Maite Mujika $^{\rm 1.2}$

¹Ceit, SPAIN and ²Universidad de Navarra, SPAIN

T216.h ROBOTIC CAPTURE AND MANIPULATION OF CELLS USING MAGNETIC MICROWHEELS

Tonguc O. Tasci¹, Tao Yang², Avanish Mishra¹, Keith Neeves², David Marr², and Mehmet Toner¹

1 Harvard Medical School, USA and ²Colorado School of Mines, USA

W211.h A REUSABLE LAB-ON-A-CHIP FOR BACTERIA ENRICHMENT FROM LARGE VOLUMES

Matthias Hügle^{1,2}, Benedict Martens¹, Ole Behrmann^{1,2}, Frank T. Hufert², Gregory Dame², and Gerald A. Urban¹ **University of Freiburg, GERMANY and **2Brandenburg Medical School Theodor Fontane. GERMANY

Cells, Organisms and Organs on a Chip

W212.h A VERSATILE MICROPATTERNING APPROACH FOR STUDYING LIVE CELL SIGNALING EVENTS

Peter Lanzerstorfer¹, Ulrike Müller¹, Roland Hager¹, Cindy Dirscherl², Klavdiya Gordiyenko³, Christof M. Niemeyer³, Sebastian Springer², and Julian Weghuber¹

¹University of Applied Sciences Upper Austria, AUSTRIA,

² Jacobs University, GERMANY, and ³ Karlsruhe Institute of Technology (KIT). GERMANY

W213.h DIFFUSION FROM STEADY-STATE PROFILE (DSSP) FOR LOW COST, LOW CONCENTRATION MEASUREMENT OF DIFFUSION

Joshua T. Loessberg-Zahl¹, Marc R. Gillrie², Roger D. Kamm², Albert van den Berg¹, Andries van der Meer¹, and Jan C.T. Eijkel¹

1 Technical University of Twente, THE NETHERLANDS and

² Massachusetts Institute of Technology, USA

W214.h EXPLORING THE BIOPHYSICAL FACTOR CAUSING BREAST CANCER CELL METASTASIZE WITH ORGANTYPIC NICHE-ON-A-CHIP

Chun-Jieh Hsu¹, Hsueh-Yao Chu¹, Yin-Ju Chen², Long-Sheng Lu², and Fan-Gang Tseng^{1,3} ¹ National Tsing Hua University, TAIWAN, ² Taipei Medical University Hospital, TAIWAN, and ³ Academia Sinica, TAIWAN

W215.h INSERTION MEASUREMENT OMPLA PROTEIN INTO LIPID BILAYER USING ION CURRENT MEASUREMENT DEVICE

Seren Ohnishi and Koki Kamiya Gunma University, JAPAN

W216.h MICROFLUIDIC PLATFORM FOR IMPLEMENTATION OF ORGANIC FIELD EFFECT TRANSISTOR BASED BIOSENSOR

Liubov Bakhchova and Ulrike Steinmann Otto-von-Guericke-University, GERMANY

W217.h THE ROLE OF INTERFACE CURVATURE ON SPERM BEHAVIOUR

Mohammad Reza Raveshi, Melati Abdul Halim, Adrian Neild, and Reza Nosrati *Monash University, AUSTRALIA*

h - Late News

Chemical Applications: Separations, Mixers and Reactions

M217.h CELL-FREE HIGH-THROUGHPUT PROTEIN SYNTHESIS USING MESOSCALE DEVICES

Karim Mohamed¹, Champak Das², Shouguang Jin¹, and Z. Hugh Fan¹

¹University of Florida, USA and ²Dasfanh Bioscience LLC, USA

M218.h EFFECTIVE MIXING IN A MICRO REACTION CHAMBER USING MAGNETIC MICRO BEADS FOR INCREASED MOLECULAR SENSING READOUT TIME

Eriola-Sophia Shanko, Yoeri van de Burgt, and Jaap den Toonder Technische Universiteit Eindhoven (TU/e), THE NETHERLANDS

Chemical Applications: Separations, Mixers and Reactions

M219.h SHAPE- AND SIZE-CONTROLLED MICROGEL PARTICLES

Daniel Debroy, John Oakey, and Katie Dongmei Li-Oakey *University of Wyoming, USA*

T217.h A MICROCHIP ELECTROPHORESIS – ELECTROCHEMICAL DETECTION (ME-EC) SYSTEM TO MONITOR OXIDATIVE MODIFICATIONS OF PROTEIN-BOUND TYROSINE AND PHENYLALANINE AS IN VIVO

BIOMARKERS FOR OXIDATIVE STRESS

Dhanushka B. Weerasekara and Susan M. Lunte *University of Kansas, USA*

T218.h COMBINATIONAL DIFFUSIOPHORETIC AND ELECTROPHORETIC NANOPARTICLE SEPARATION

Kyunghun Lee¹, Jongwan Lee¹, Dogyeong Ha¹, Minseok Kim², and Taesung Kim¹

¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Kumoh National Institute of Technology, KOREA

T219.h HIGH-THROUGHPUT DROPLET MICROREACTOR FOR CATALYTIC ACTIVITY SCREENING OF SOLID CATALYST PARTICLES

Jeroen C. Vollenbroek¹, Anne-Eva Nieuwelink², Johan G. Bomer¹, Ronald M. Tiggelaar¹, Albert Van den Berg¹, Bert M. Weckhuysen², and Mathieu Odijk¹

¹University of Twente, THE NETHERLANDS and

²Utrecht University, THE NETHERLANDS

T220.h SYNTHESIS OF MONODISPERSE GOLD NANOPARTICLES IN FOUR PHASES MICROFLUIDICS BY CONTROLLING FLOW RATE DIFFERENCE

Yuanwei Wang, Hayato Ogawa, and Hiromasa Yagyu Kanto Gakuin University, JAPAN

W218.h A REPULSIVE POINT-SOURCE DIFFUSIOPHORESIS DEVICE FOR NANOPARTICLE SEPARATION

Sangjin Seo, Dogyeong Ha, and Taesung Kim Ulsan National Institute of Science and Technology (UNIST), KOREA

W219.h COMPARATIVE STUDY OF LIQUID-PHASE AUTOXIDATION OF INDAN IN MICROFLUIDIC REACTORS

Muhammad Siddiquee, Yucheng Wu, and Neda Nazemifard University of Alberta, CANADA

W220.h PEO CAN IMPROVE THE RESOLUTION OF SIZE-BASED SEPARATIONS IN SPIRAL CHANNELS

Alex Jafek, Haidong Feng, Hayden Brady, Raheel Samuel, and Bruce Gale University of Utah, USA

h - Late News

Diagnostics, Drug Testing & Personalized Medicine

M220.h A MICROFLUIDIC CAVITATION-MICROSTREAMING DNA EXTRACTOR

Abdi M. Kaba, Hyunjin Jeon, and Dohyun Kim *Myongji University, KOREA*

M221.h DEVELOPMENT OF A SIMPLE LAB-ON-A-CHIP SYSTEM FOR THE SENSITIVE IMMUNOASSAY-BASED DETECTION OF BACTERIAL PATHOGENS FROM FOOD SAMPLES

Suk-Jung Choi and Hee-Jung Kim Gangneung-Wonju National University, KOREA

M222.h GRAVITY-DRIVEN MICROFLUIDIC SPUTUM HOMOGENIZER

Korakot Boonyaphon and Sung-Jin Kim Konkuk University, KOREA

M223.h MICROCHANNELS FOR PRECONCENTRATING SWEAT

Hirotada Hirama¹, Ryutaro Otahara², and Masanori Hayase²

¹National Institute of Advanced Industrial Science and Technology
(AIST), JAPAN and ²Tokyo University of Science, JAPAN

M224.h MITIGATION OF CHANNEL CLOGGING IN A DETERMINISTIC LATERAL DISPLACEMENT BLOOD PROCESSING DEVICE BY POLYAMINE INDUCED DNA FOLDING

Tatsuya Yoshizawa¹, Yuki Jingu¹, Yuki Oka¹, Masaru Irita¹,
Toshihiro Suzuki^{2,3}, Tetsuya Nakatsura³, Masato Kubo¹,
Ryushin Mizuta¹, and Masanori Hayase¹

¹ Tokyo University of Science, JAPAN, ² Teikyo University, JAPAN, and

³ National Cancer Center Japan. JAPAN

M225.h ON CHIP PLATFORM FOR TAU PROTEIN AGGREGATION AND ALZHEIMER'S DRUG DOSE RESPONSE

Shubha Jain, Lopamudra Das, Sarpras Swain, Lopamudra Giri, and Harikrishnan Narayanan Unni Indian Institute of Technology (IIT Hyderabad), INDIA

M226.h QUICK ISOLATION OF CIRCULATING TUMOR CELLS FROM HUMAN WHOLE BLOOD BY A NOVEL MICROFUIDIC DESIGN

Sung-Chi Tsai, Yi-Jen Chen, Wen-Yi Chang, Pyea-Yoo Kim, Yun-Chi Tsai, and Howard Doong LifeCode Biotech Co., TAIWAN

M227.h A SINGLE TUBE ASSAY BASED ON DUAL-ELECTROSTATIC INTERACTION STRATEGY FOR RAPID AND ULTRASENSITIVE PATHOGENIC BACTERIA DETECTION

Feixiong Chen¹, Dao Thi Thuy Nguyen², Yong Shin², and Tae Yoon Lee¹

1 Chungnam National University, KOREA and
2 University of Ulsan College of Medicine, KOREA

T221.h AMPHIPHILIC POLY(α)GLUTAMATE AS RNA INTERFERENCE NANOCARRIER TO BRAIN TUMORS

Adva Krivitsky, Eilam Yeini, Sabina Pozzi, Sapir Golan, Evgeni Pisarevsky, and Ronit Satchi-Fainaro Tel-Aviv University, ISRAEL

Diagnostics, Drug Testing & Personalized Medicine

T222.h CAPACITIVE SENSING OF TRIGLYCERIDE FILM REACTIONS TO DUODENAL CONTENTS

George E. Banis, Luke A. Beardslee, Justin M. Stine, and Reza Ghodssi University of Maryland, USA

T223.h INTEGRATED PROTOTYPE FOR POINT-OF-CARE DIAGNOSIS OF CHLAMYDIA TRACHOMATIS INFECTIONS

Shivani Sathish, Kazumi Toda-Peters, and Amy Q. Shen Okinawa Institute of Science and Technology (OIST), JAPAN

T224.h MICROFLUIDIC SYSTEM USING A HOMOBIFUNCTIONAL IMIDOESTER FOR SIMULTANEOUS BIOMOLECULES ISOLATION

Yoon Ok Jang¹, Choong Eun Jin¹, Bonhan Koo¹, Tae Yoon Lee², and Yong Shin¹ ¹ University of Ulsan College of Medicine, KOREA and ² Chungnam National University, KOREA

T225.h NEURONAL CULTURE AT SINGLE CELL LEVEL FOR CREATION OF BIOLOGICAL NEURONAL NETWORK

Stephany Mai Nishikawa¹, Soo Hyeon Kim¹, Yoshiho Ikeuchi¹, Timothée Levi^{1,2}, and Teruo Fujii¹ **Iniversity of Tokyo, JAPAN and **University of Bordeaux, FRANCE

T226.h PERFORMANCE OF USING DEFORMABILITY OF ENDOMETRIAL CELLS AS A DIAGNOSTIC TEST FOR ENDOMETRIOSIS

Ahmad Altayyeb¹, Essam Othman², Maha Khashbah², Abdelhady Esmaeel², Mohamed El-Mokhtar², Cornelis Lambalk³, Velja Mijatovic³, and Mohamed Abdelgawad².4

¹Zewail City of Science and Technology, EGYPT, ²Assiut University, EGYPT, ³Amsterdam University Medical Center, THE NETHERLANDS, and ⁴American University of Sharjah, UAE

T227.h SIMULTANEOUS, TRIPLEX COLOURIMETRIC MEASUREMENT OF CARDIAC BIOMARKERS IN FLUOROPOLYMER MICROFLUIDIC STRIPS

Nuno Reis^{1,2,3}, Ana Castanheira^{1,2}, Filipa Pereira¹, and Alexander Edwards^{1,4} ¹ Capillary Film Technology Ltd., UK, ² Loughborough University, UK, ³ University of Bath, UK, and ⁴ University of Reading, UK

T228.h SYNTHESIS OF BORON-10 ENRICHED CHITOSAN COATED PVA/ALGINATE NANOPARTICLES (CHI/ALG-PVA-B NPS) BY ELECTROSPRAY TECHNIQUE TO TREAT ORAL SQUAMOUS CELL CARCINOMA BY BORON NEUTRON CAPTURE THERAPY (BNCT)

Han-Lin Cho¹, Venkanagouda S. Goudar¹, Wei-Jen Chan¹, and Fan-Gang Tseng^{1,2}

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

Diagnostics, Drug Testing & Personalized Medicine

W221.h 3-DIMENSIONAL PAPER-BASED SAMPLE PREPARATION DEVICE FOR EXOSOME ISOLATION/PRECONCENTRATION

Hyerin Kim1, Kyu Hyoung Lee2, Sung II Han3, Dongho Lee3, Yong Kyoung Yoo1, Cheonjung Kim1, Junwoo Lee1, Ganghyeon Kim1, Seok Chung4, Dohwan Lee1,5, and Jeong Hoon Lee1 1 Kwangwoon University, KOREA, 2 Yonsei University, KOREA,

³CALTH. Inc., KOREA, ⁴Korea University, KOREA, and

⁵Georgia Institute of Technology, USA

W222.h ASSESSMENT OF CHIMERIC ANTIGEN RECEPTOR T (CAR-T) CELL CYTOTOXICITY USING DROPLET MICROFLUIDICS

Haitao Wang¹, Johnny Kuan-Un Wong¹, Jingxuan Shi^{2,3}, Yanwei Jia1, Chuxia Deng1, Lianmei Jiang4, Peng Li2, and Ada Hang-Heng Wong1

¹University of Macau, MACAU, ²Chinese Academy of Science, CHINA, 3 University of Chinese Academy of Sciences, CHINA, and

⁴Macquarie University, AUSTRALIA

W223.h GUIDING 3D PODOCYTE CELLS CULTIVATION ON THE OUTER **COAXIAL ALGINATE TUBES TO MAKE GLOMERULAR** ON THE CHIP

Yin-Yun Chen1, Jyun-Wei Chen1, Jie-Sheng Chen1, Yi-Ching Ko2, Hsiang-Hao Hsu2, and Fan-Gang Tseng1,3 ¹National Tsing Hua University, TAIWAN, ²Kinkou Chang Gung Memorial Hospital, TAIWAN, and ³Academia Sinica, TAIWAN

MACROPHAGE ACCELERATES INFLAMMATION OF PANCREATIC W224.h **B-CELL AGGREGATES**

Marie Shinohara, Thalia Nghiem, Qiao You Lau, Fumiya Tokitou. and Yasuvuki Sakai University of Tokyo, JAPAN

W225.h MINIATURIZED EXOSOME ISOLATION SYSTEM USING CATIONIC POLYMER AND SYRINGE FILTER

Chanhee Park, Jinhvun Kim, Hovoon Lee, Jina Choi, Hyunsung Kim, and Sehvun Shin Korea University, KOREA

W226.h OPTIMIZATION OF THE THIN-LAYERED ELISA AND STORAGE OF THE MICROCHIP

Adelina Smirnova, Ryoichi Ohta, Kazuma Mawatari, and Takehiko Kitamori University of Tokyo, JAPAN

W227.h PAPER-BASED MINIATURIZED DEVICE FOR DETECTION OF BETA-LACTAM ANTIBIOTICS IN MILK

Sammer-ul Hassan¹, Prashant Goel², Naresh Kumar², and Xunli Zhang1

¹University of Southampton, UK and

²National Dairy Research Institute, INDIA

Diagnostics, Drug Testing & Personalized Medicine

W228.h SINGLE LASER-DETECTOR BASED MULTIPLEXED FLUORESCENCE MEASUREMENT IN DROPLET MICROFLUIDICS USING ON-CHIP FIBRE OPTICS

Ambili Mohan¹, Preksha Gupta², Taslimarif Saiyed², and Anil Prabhakar¹

Indian Institute of Technology, INDIA and

W229.h TOWARD A DROPLET-BASED FLUORESCENCE ASSAY FOR CRISPR-CAS9 ENGINEERING

Alexandre Baccouche, Kevin Montagne, Hiroshi Nishimasu, Nozomu Yachie, Osamu Nureki, Teruo Fujii, and Anthony J. Genot University of Tokyo, JAPAN

h - Late News

Fundamentals in Microfluidics and Nanofluidics

M228.h ACOUSTOPHORESIS IN GEL-FILLED MICROCHANNELS TOWARDS IN VIVO-LIKE CELL MANIPULATION AND CELL MIGRATION STUDIES

Michael Heiss and Rune Barnkob Technical University of Munich, GERMANY

M229.h AXIAL ELECTROKINETIC TRAPPING OF SINGLE PARTICLES AT KHZ FEEDBACK RATES

Filip Strubbe, Vincent De Clercq, and Yerzhan Y. Ussembayev Ghent University, BELGIUM

M230.h COUPLING ELECTROTHERMAL ROLLS AND DIELECTROPHERESIS FOR CONTINUOUS-FLOW SEPARATION OF NANOPARTICLES

Stanley D.E. Kushigbor and Levent Yobas Hong Kong University of Science and Technology, HONG KONG

M231.h DNA EXTRACTION FROM CULTURE MEDIUM BY USING EWOD SYSTEM

Chen-En Chiang¹, Tzu-Hui Wu², Pei-Shin Jiang², Chien-An Chen², and Da-Jenf Yao¹ ¹*National Tsinghua University, TAIWAN and* ²*Industrial Technology Research Institute (ITRI), TAIWAN*

M232.h FERROHYDRODYNAMICS OF BACTERIAL SWARM CONTROL

Nima Mirkhani, Thuy Trinh Nguyen, Tinotenda Gwisai, Michael Christiansen, and Simone Schuerle ETH Zürich, SWITZERLAND

M233.h HIGH EFFICIENT AND SELECTABLE CONCENTRATION OF BACTERIA AND SERS PARTICLES THROUGH THE SYNERGIC EFFECT OF ACEOF AND DEP FOR RAPID BACTERIAL DETECTION FROM WHOLE BLOOD

Kuan-Hung Chen¹, Shih-Han Lee¹, Tseren-Onolt Ishdorj², Chun-Wei Lee¹, and Fan-Gang Tseng¹,3

¹National Tsing Hua University, TAIWAN, ²Mongolian University of Science and Technology, MONGOLIA, and ³Academia Sinica, TAIWAN

²Centre for Cellular and Molecular Platforms, INDIA

Fundamentals in Microfluidics and Nanofluidics

M234.h MICRO-SWIMMER TRAP-AND-RELEASE USING STANDING SURFACE ACOUSTIC WAVES

Mingyang Cui¹, Minji Kim¹, Mathieu Bottier^{1,2}, Philip V. Bayly¹, and J. Mark Meacham¹

¹Washington University, St. Louis, USA and

²Washington University School of Medicine, St. Louis, USA

M235.h SIMPLE AND PASSIVE MERGING-ON-DEMAND METHOD FOR REACTION ENGINEERING IN DROPLET MICROFLUIDICS

Medina Hamidović¹, Uli Marta², Helen Bridle², Gerold Fink¹, Robert Wille¹, Andreas Springer², and Werner Haselmayr¹ ¹Johannes Kepler University Linz, AUSTRIA and ²Heriot-Watt University, UK

T229.h A FULLY INTEGRATED WEARABLE AC ELECTROTHERMAL ACTUATION PLATFORM FOR BIOFLUID MANIPULATION

Haisong Lin, Hannaneh Hojaiji, Shuyu Lin, Christopher Yeung, Yichao Zhao, Bo Wang, Meghana Malige, Yibo Wang, Kimber King, Wenzhuo Yu, Jiawei Tan, Zhaoqing Wang, Xuanbing Cheng, and Sam Emaminejad University of California, Los Angeles, USA

T230.h CAPILLARY FILLING OF COMPLEX FLUIDS IN MICROCHANNELS WITH ALTERED WETTABILITY

Kiarash Keshmiri¹, Haibo Huang², Abebaw Jemere³, and Neda Nazemifard¹ ¹ University of Alberta, CANADA, ² InnoTech Alberta, CANADA, and ³ National Research Council of Canada, CANADA

T231.h DIELECTROPHORESIS CONFINEMENT OF NANO-BIOLOGICAL PARTICLES

Imman I. Hosseini, Zezhu Liu, Walter Reisner, and Sara Mahshid McGill University, CANADA

T232.h DOUBLE EMULSION GENERATION USING CENTRIFUGAL MICROFLUIDIC PLATFORMS

Masoud Madadelahi¹, Marc J. Madou^{1,2}, Yeganeh Dorri Nokoorani³, Amir Shamloo³, and Sergio O. Martinez-Chapa¹ ¹Tecnologico de Monterrey, MEXICO, ²University of California, Irvine, and USA, ³Sharif University of Technology, IRAN

T233.h FLUIDIZATION AND WALL SLIP OF SOFT GLASSY MATERIALS BY CONTROLLED SURFACE ROUGHNESS

Davide Ferraro¹, Daniele Filippi¹, Ladislav Derzsi¹.⁴, Piotr Garstecky⁴, Giampaolo Mistura¹, Matteo Lulli², Massimo Bernaschi³,

Mauro Sbragaglia², and Matteo Pierno¹

¹University of Padova, ITALY, ²University "Tor Vergata" of Rome, ITALY,

3 Istituto per le Applicazioni del Calcolo CNR, ITALY, and

⁴Polish Academy of Sciences, POLAND

Fundamentals in Microfluidics and Nanofluidics

T234.h IMAGING MICROFLUIDIC FLOWS WITH DNA MICROSCOPY

Hayato Onoue, Nicolas Lobato-Dauzier, Shu Okumura, Stephane Poulain, Soo Hyeon Kim, Teruo Fujii, and Anthony J. Genot *University of Tokyo, JAPAN*

T235.h MINIATURIZED PROTEOMICS OF MAMMALIAN CELLS ON A DIGITAL MICROFLUIDICS DEVICE

Jan Leipert and Andreas Tholey Kiel University, GERMANY

T236.h WIDE-FIELD IMAGING SYSTEM FOR DIGITAL CFU ASSAY THROUGH 10-MILLION DROPLET ANALYSIS

Sunghyun Ki, Juhwa Lee, Joel Sánchez Barea, and Dong-Ku Kang Incheon National University, KOREA

W230.h AUTOMATED PRE-ANALYTIC PROCESSING OF WHOLE SALIVA ON A CENTRIFUGAL MICROFLUIDIC PLATFORM FOR PROTEIN BIOMARKER ANALYSIS

Benita Johannsen¹, Lara Müller¹, Desirée Baumgartner¹.², Lena Karkossa¹, Susanna M. Früh¹.², Nagihan Bostanci³, Michal Karpíšek⁴, Roland Zengerle¹.², Nils Paust¹.², and Konstantinos Mitsakakis¹.² ¹ Hahn-Schickard, GERMANY, ² University Freiburg, GERMANY, ³ Karolinska Institutet, SWEDEN, and ⁴ BioVendor Laboratorni Medicina a.s., CZECH REPUBLIC

W231.h CELLPROFILER IS A FIT TOOL FOR DROPLET DIGITAL IMAGE ANALYSIS

Simona Bartkova, Marko Vendelin, Pille Pata, and Ott Scheler, Tallinn University of Technology, ESTONIA

W232.h DIFFERENTIAL SECOND-DEGREE OF FREEDOM CENTRIFUGAL MICROFLUIDICS

Eimear Higgins¹, Cian Merne¹, Patrick Wogan¹, David Collins¹, Sarai M. Torres-Delgado², Dario Mager², and David J. Kinahan¹ ¹Dublin City University, IRELAND and ²Karlsruhe Institute of Technology, GERMANY

W233.h EASY MODULE CHIP PLATFORM FOR MICROFLUIDICS

Tae Jae Lee¹, Moon Keun Lee¹, Nam Ho Bae¹, Kyoung G. Lee¹, Yoo Min Park¹, Yun Seok Heo², and Seok Jae Lee¹

1 National NanoFab Center (NNFC), KOREA and
2 Keimyung University, KOREA

W234.h FLOW PROFILE THROUGH EXPOSED POROUS MEDIA IN CENTRIFUGAL MICROFLUIDICS

Daniel M. Kainz¹, Susanna M. Früh^{1,2}, Tobias Hutzenlaub^{1,2}, Roland Zengerle^{1,2}, and Nils Paust^{1,2}

1 University of Freiburg, GERMANY and ²Hahn-Schickard, GERMANY

Fundamentals in Microfluidics and Nanofluidics

W235.h MAPPING COMPLEX PRESSURE FIELDS USING SWIMMING MICROORGANISMS

Minji Kim, Philip V. Bayly, and J. Mark Meacham Washington University, St. Louis, USA

W236.h OIL/WATER PARTITIONING AND MICRODIALYSIS FOR CONTROLLED DELIVERY OF HYDROPHOBIC COMPOUNDS IN DROPLET-BASED MICROFLUIDIC SYSTEMS

Michal Vasina¹, Tomas Buryska^{1,2}, Pavel Vanacek^{1,2}, Fabrice Gielen^{3,4}, Liisa V. Vliet⁴, Zdenek Pilat⁵, Jan Jezek⁵, Pavel Zemanek⁵, Jiri Damborsky^{1,2}, Florian Hollfelder⁴, and Zbynek Prokop^{1,2}

¹ Masaryk University, CZECH REPUBLIC, ²St. Anne's University Hospital, CZECH REPUBLIC, ³University of Exeter, UK, ⁴University of Cambridge, UK, and ⁵Czech Academy of Sciences, CZECH REPUBLIC

h - Late News

Micro- and Nanoengineering

M236.h 3D PRINTING PROTEIN HYDROGEL CHIPS

Haiyang Jia and Petra Schwille

Max-Planck-Institute of Biochemistry, GERMANY

M237.h LARGE-SCALE FABRICATION OF MICROFLUIDIC CHIPS WITH THREE-DIMENSIONAL MICROSTRUCTURES FOR POINT OF CARE APPLICATION

Trieu Nguyen, Vinayaka Aaydha Chidambara, Dang Duong Bang, and Anders Wolff Technical University of Denmark, DENMARK

M238.h WET SPINNING OF A LOW MOLECULAR WEIGHT HYDROGEL TOWARDS 3D PRINTING

Anaïs Chalard, Sandrine Assié-Souleille, Charline Blatché, Barbara Lonetti, Nathalie Saffon-Merceron, Isabelle Loubinoux, Laurence Vaysse, Laurent Malaquin, Juliette Fitremann, and Pierre Joseph Université de Toulouse, FRANCE

T237.h DEVELOPMENT OF CELL CULTURE MICRODEVICE USING GELATIN GEL

Satoko Sasaki and Kae Sato Japan Women's University, JAPAN

T238.h MACRO VALVE AND PERISTALTIC PUMP WITH CLEANROOM-FREE FABRICATION FOR MULTIPLEXED ORGAN-ON-CHIP APPLICATIONS

Elsbeth G.B.M. Bossink, Anke R. Vollertsen, Loes I. Segerink, and Mathieu Odijk

University of Twente, THE NETHERLANDS

T239.h RAPID FABRICATION OF PMMA/PET-E/PMMA FOR THERMOPLASTIC MICROFLUIDIC MEMBRANE DEVICES

Henrik Persson^{1,2,3}, Siwan Park¹, Michael Mohan¹, Edmond Young¹, and Craig A. Simmons^{1,3}

¹University of Toronto, CANADA, ²Lund University, SWEDEN, and

3 Ted Roger's Centre for Heart Research, CANADA

Micro- and Nanoengineering

W237.h 3D BIOPRINTING OF ALGINATE HYDROGEL SCAFFOLDS USING FINE CALCIUM CHLORIDE MIST DROPLETS

Ben MacCallum, Emad Naseri, Wyatt MacNevin, and Ali Ahmadi University of Prince Edward Island, CANADA

W238.h FABRICATION OF 3D-MICROSTRUCTURES USING A DMD-BASED TECHNOLOGY: PROOF OF CONCEPT AND APPLICATION

Marie Camman^{1,2}, Catherine Villard², Audric Jan², Guillaume Laffite², Josselin Ruaudel¹, Olivier Lesage², and Matthieu Opitz¹

¹ Alvéole, FRANCE and ² Université Paris Sciences et Lettres, FRANCE

W239.h MINIATURISING SUPERCRITICAL ANGLE FLUORESCENCE AND TOTAL INTERNAL REFLECTION FLUORESCENCE STRUCTURES FOR A MICROFLUIDIC SYSTEM USING IN DIAGNOSTIC APPLICATIONS

Trieu Nguyen and Anders Wolff Technical University of Denmark, DENMARK

h - Late News

Other Applications of Microfluidics

M239.h SOFT ACTUATORS WITH PROGRAMMABLE MAGNETIC PARTICLES

Heng-Yu Shen¹, Chih-Cheng Cheng², Tien-Kan Chung², and Yen-Wen Lu¹

W240.h MICROFLUIDICS-BASED RANDOM NUMBER GENERATOR DRIVEN BY FINGER PUSH AND GRAVITY FORCE

Korakot Boonyaphon¹, Shuichi Takayama², and Sung-Jin Kim¹

**Index to the Should of the Should

h - Late News

Sensors and Detection Technologies

M240.h AN INTEGRATED GRAPHENE SENSOR FOR CLINICAL BIOMARKERS DETECTION IN A DIFFERENTIAL AND PORTABLE WAY

Yunlu Pan, Cong Huang, Wenwen Shao, and Zhuang Hao Harbin Institute of Technology, CHINA

M241.h DEVELOPMENT OF AN RAPID DIAGNOSTIC TEST MICROFLUIDIC CHIP USING POLYCARBONATE FILM FOR MALARIA DETECTION

Yong Tae Kim, Jihye Choi, and Heungsop Shin Korea Polytechnic University, KOREA

M242.h INTEGRATED SYSTEM USING A GAS PRECONCENTRATOR AND A COLORIMETRIC SENSOR ARRAY FOR EXHALED BREATH ANALYSIS

Hye-Lim Kang¹, Sumi Yoon¹, Dong-Ki Hong¹, Won-Hye Kim¹, Woo Kyeong Seong¹, Hana Cho¹, Dong-Sik Shin², and Kook-Nyung Lee¹

1 Korea Electronics Technology Institute, KOREA and

²Sookmyung Women's University, KOREA

¹National Taiwan University, TAIWAN and

²National Chiao Tung University, TAIWAN

Sensors and Detection Technologies

M243.h LIGHT-CONTROLLED COLLECTION-AND-RELEASE OF BIOMOLE-CULES BY AN ON-CHIP NANOSTRUCTURED DEVICE

Vadim Krivitsky, Ella Borberg, Marina Basovich, Omri Heifler, and Fernando Patolsky Tel Aviv University, ISRAEL

MICROTITER PLATE VIABILITY ASSAY TO EXTEND RESULTS OF M244.h THERMAL SENSOR WITH DISINFECTANTS ETHANOL. PERACETIC ACID AND SODIUM HYPOCHLORITE

Tobias Wieland, Jan K. Kotthaus, Michael Bergmann, and Gerald A. Urban University of Freiburg, GERMANY

MULTIPLEXED ELECTROCHEMICAL PLATFORM FOR M245.h SEPSIS DIAGNOSTICS

Uroš Zupančič¹, Pawan Jolly², Pedro Estrela¹, Despina Moschou¹, and Donald E. Ingber2,3 ¹University of Bath, UK, ²Harvard University, USA, and

³Boston Children's Hospital and Harvard Medical School, USA

PORTABLE FLOW CELL FOR DETECTION OF MULTIPLE MICROCHANNELS IN A SINGLE CHIP

Sammer-ul Hassan and Xunli Zhang University of Southampton, UK

SPECIFIC DETECTION OF POINT-MUTATION-POSITION USING M247.h BIOLOGICAL NANOPORE

Ping Liu, Keisuke Shimizu, and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN

T240.h 3D NANOPOROUS CARBON MICROELECTRODES WITH SPONGE-LIKE EDGE STRUCTURES FOR HEAVY METAL SENSING

Jongmin Lee and Heungjoo Shin Ulsan National Institute of Science and Technology (UNIST), KOREA

T241.h ANTIBODY-FREE ASSAY FOR ELECTROCHEMICAL **B-LACTAM MONITORING**

H. Ceren Ates, Nils Schneider, Richard Bruch, Wilfried Weber, Gerald Urban, and Can Dincer University of Freiburg, GERMANY

T242.h EFFECT OF ADDITIONAL THIN LAYER ON CHEMICAL SWELLING-INDUCED COLOR CHANGE IN COLLOIDAL CRYSTAL-PDMS COMPOSITE

Hyung-Kwan Chang, Hyojeong Kim, and Jungyul Park Sogang University, KOREA

T243.h INTEGRATING APTAMERS WITH PAPER-BASED MICROSCALE ANALYTICAL DEVICES FOR BIOMEDICAL MONITORING

Meng Liu, Christy Liu, Yingfu Li, and John D. Brennan McMaster University, CANADA

Sensors and Detection Technologies

T244.h LIVE QUANTIFICATION OF CELL VIABILITY VIA NEUTRAL RED UPTAKE USING LENS-FREE IMAGING

Brian J. Nablo², Jung-Joon Ahn², Kiran Bhadriraju¹, Jong Muk Lee², and Darwin Reyes¹ ¹National Institute of Standards and Technology (NIST), USA and ²SOL Inc., KOREA

T245.h MICROWAVE RADARS FOR LABEL FREE SINGLE-CELL DETECTION IN REAL TIME SYNCHRONIZED WITH OPTICAL IMAGE

Arda Secme, Hadi S. Pisheh, H. Dilara Uslu, and Selim Hanay Bilkent University, TURKEY

T246.h PASSIVE WIRELESS SENSING OF MICROTISSUE PROPERTIES

Lei Dong^{1,2}, Mario M. Modena¹, and Andreas Hierlemann¹

1ETH Zürich, SWITZERLAND and 2Southeast University, CHINA

T247.h REAL-TIME AND MULTIPLEXED IMPEDANCE MONITORING OF ADIPOGENIC DIFFERENTIATION

Lianmei Jiang^{1,2}, Junjun Li¹, Jianmiao Liu³, and Yong Chen¹ École Normale Supérieure, FRANCE, ²Macquarie University, AUSTRALIA, and ³CNRS, FRANCE

W241.h WITHDRAWN

W242.h BPOD: WIRELESS DISSOLVED OXYGEN SENSOR-INTEGRATED PLATFORM TOWARDS BIOPROCESS MONITORING

Justin M. Stine, Luke A. Beardslee, Rajendra M. Sathyam, William E. Bentley, and Reza Ghodssi *University of Maryland, USA*

W243.h INLAID MICROFLUIDICS FOR NUTRIENT MONITORING

Sean C. Morgan, Edward A. Luy, and Vincent J. Sieben *Dalhousie University, CANADA*

W244.h LABEL-FREE DISCRIMINATION FOR CARCINOMA CELLS THROUGH IONIC CURRENT SIGNALS

Kazumichi Yokota, Muneaki Hashimoto, Kazuaki Kajimoto, Masato Tanaka, and Masatoshi Kataoka National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W245.h LOW-COST GLUCOSE SENSOR USING COMPACT DISC SUBSTRATES

Nityanand Kumawat¹, Priyamvada Venugopalan¹, and Sunil Kumar^{1,2}

New York University, Abu Dhabi, UAE and ²New York University, USA

W246.h MULTIPLEX, LABEL-FREE QUANTIFICATION OF mIRNA BY REFLECTIVE PHANTOM INTERFACE

Giuliano Zanchetta, Thomas Carzaniga, Luka Vanjur, Luca Casiraghi, Tommaso Bellini, and Marco Buscaglia Università degli Studi di Milano, ITALY

Sensors and Detection Technologies


W247.h PLANT WATER POTENTIAL SENSOR USING NANO POROUS ANODIC ALUMINIUM OXIDE

Sanghoon Han, Tae Woong Yun, and Junghoon Lee Seoul National University, KOREA

W248.h SENSITIVITY IMPROVEMENT OF ELECTROCHEMICAL IMMUNOASSAY USING MAGNETIC PARTICLES TO KEEP A BARE INDIUM TIN OXIDE (ITO) ELECTRODE

Sunga Song, Young Joo Kim, Hye-Lim Kang, Sumi Yoon, Dong-Ki Hong, Won-Hyo Kim, Woo Kyeong Seong, and Kook-Nyung Lee Korea Electrics Technology Institute, KOREA

26 – 28 August, 2020 University of Glasgow, Scotland

the Save

Acoustofluidics 2020

CHAIR

Thomas Franke

University of Glasgow, SCOTLAND,

acoustofluidics.net

Nicola Aceto

University of Basel, SWITZERLAND

Guillaume Charras

University College London, UK

Hang Lu

Georgia Institute of Technology, USA

Matthias Lutolf

EPFL SWITZERLAND

Christine Mummery

Leiden University, THE NETHERLANDS

Viola Vogel

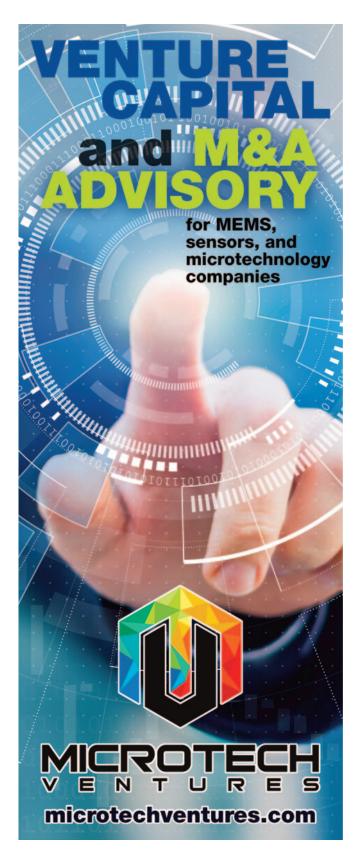
ETH Zurich, SWITZERLAND

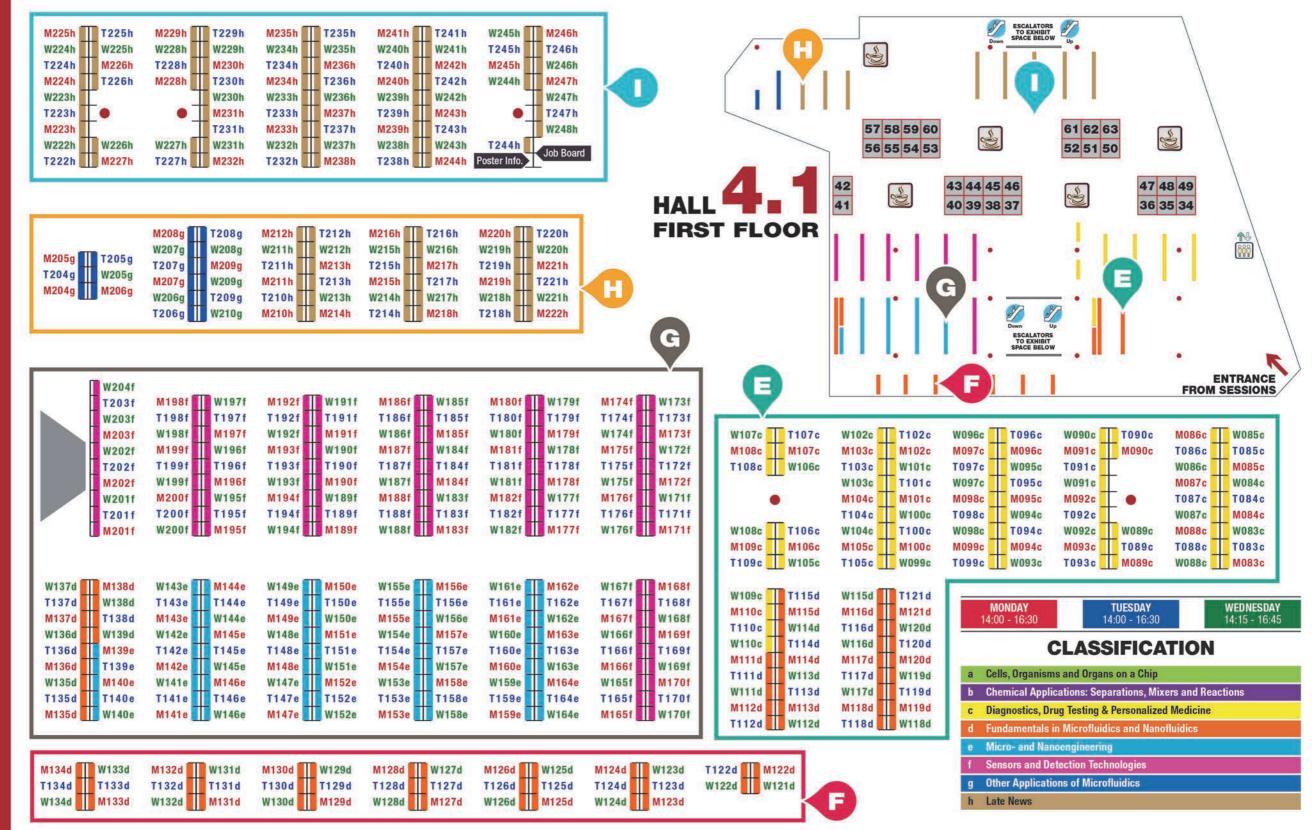
CONFERENCE CHAIRS

Marianna Kruithof-de Julio - University of Bern, SWITZERLAND lan Y. Wong - Brown University, USA

EARLY BIRD REGISTRATION: November

CONFERENCE CHAIRS


Karen Cheung University of British Columbia, CANADA


David Horsley

University of California, Davis, USA

WWW.MEMS20.0RG

FOLD OUT FOR POSTER PRESENTATION FLOOR PLANS

SAVE THE DATE!

October 4–8, 2020

Palm Springs Convention Center

CALIFORNIA, USA

Conference Chairs:

Amy E. Herr – University of California, Berkeley, USA
Joel Voldman – Massachusetts Institute of Technology, USA

cbmsociety.org/microtas2020

Sponsored by

CBMS

Chemical and Biologic Microsystems Society

