

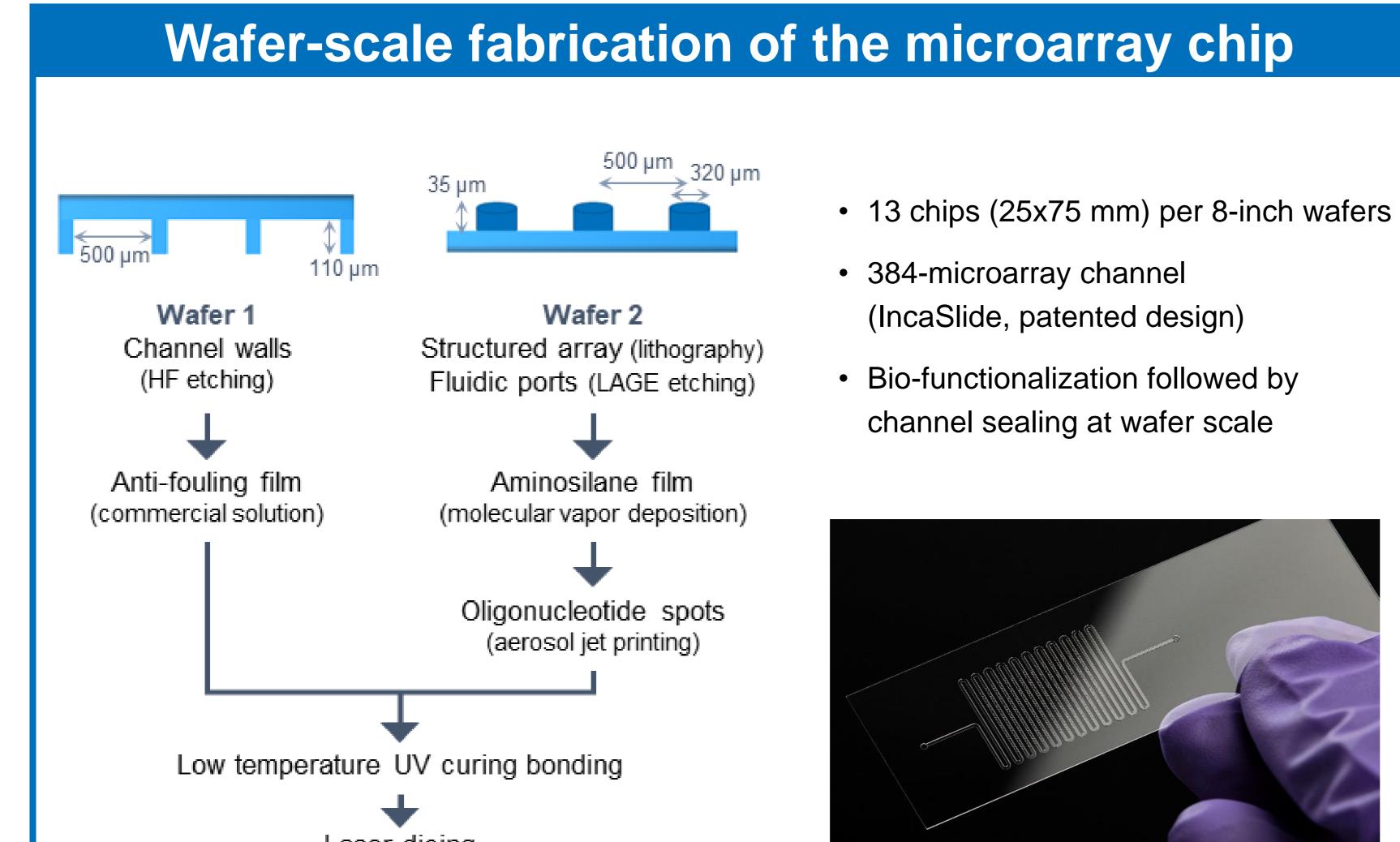
info@csem.ch

www.csem.ch

Enabling Cost-effective Glass Microfluidics for Life Sciences: The Example of a Complete Sequencing Device Fabricated at Wafer Scale

S. Heub¹, R. Smajda¹, G. voirin¹, G. Weder¹, A. Sanz-Velasco², T. Bauert², Alexios Tzannis², R. Pugin¹, M. Despont¹

Contact: sarah.heub@csem.ch ¹CSEM SA, Switzerland ²*IMT AG, Switzerland*

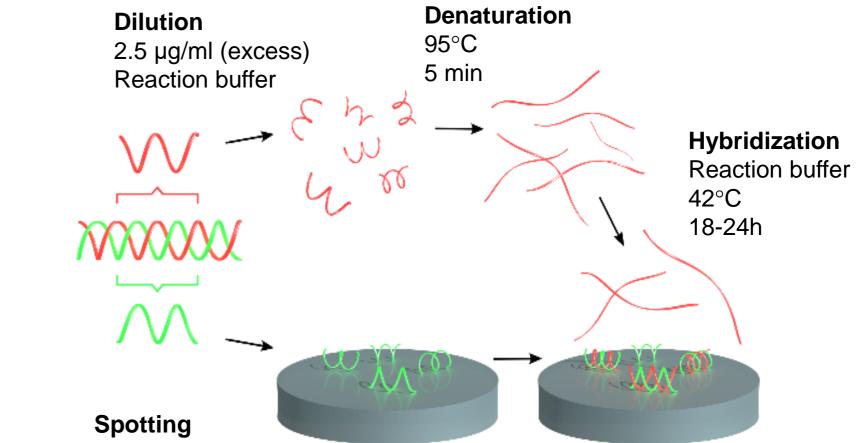

chweizerische Eidgenossenschaft Confédération suisse federazione Svizzera Confederaziun svizra Swiss Confederation

PRECISION ON GLASS

Innosuisse – Swiss Innovation Agency

Glass advantages over plastics are acknowledged in the microfluidics community. However, the costs associated with device manufacturing often limit its use in bio-applications. The bottleneck remains channel sealing, especially when it is required after bio-functionalization. Here we demonstrate for the first time wafer-level integration of structured bio-functionalization by UV-bonding for sequencing applications. We present a new cost-effective manufacturing

process that maintains biomolecule integrity during the fabrication of the glass microfluidic device. It was developed to produce a flow-through microarray chip. This process combines surface micro-structuration and functionalization with the immobilization of oligonucleotides and low-temperature bonding.


Characterization of the microarray

Fluorescently labelled oligonucleotides

Sequence part of core protein J, Bacteriophage PhiX 174

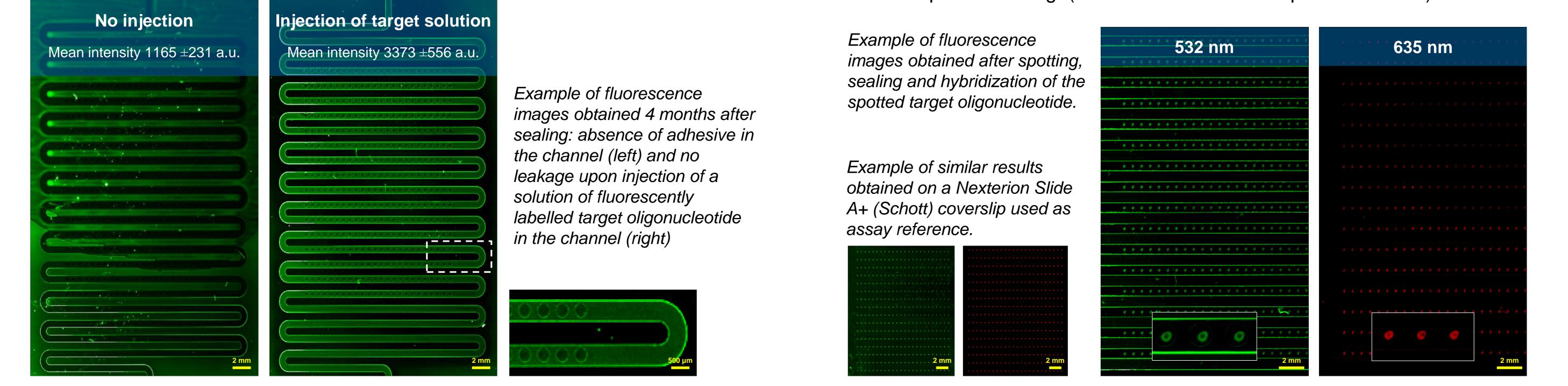
	Target	5'-TTTTAAGCGTAAAGGCGCTCGTCTTTGGTATGTAG-3'	5' Modification: amine							
	Target	5-TTTTAAGCGTAAAGGCGCTCGTCTTTGGTATGTAG-5	3' Modification: ATTO532							
	Probe	5'-CTACATACCAAAGACGAGCGCCTTTACGCTT-3'	5' Modification: ATTO647N							
	FIDDE		3' Modification: none							

• Hybridization assays run in the sealed chips (stopped flow)

Laser dicing

Ambient conditions

Pre-hybridization Reaction buffer, drying


Results

Efficient channel sealing

- Reproducible application of the adhesive
- No adhesive leaking in the channel

CSEM SA

• Stable channel sealing over at least 4 months without leakage

Preserved microarray performances

The spotted target oligonucleotides are reactive and specific after chip bonding with our process:

- Preserved target spots (green spots)
- Efficient pairing of the probe during hybridization (red spots)
- No non-specific binding (tested with 5 nucleotide pairs mismatch)

					Ę	53	32	2	ľ		m										0						6	3	3	5	r	Ń	ń	, e				
0	0	0	0	0	0	0	0	ø	0	9	ø		D.	0	0	0	4	2	ø	¢	¢.																	
p	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	ø	0		P .	0	0	Ø																	
0	0	0	0	0	0	0	0	0	0	0	0		0	0	đ	0		9	0	0	0																	
2	0	0		0	•	0	0	0	Ø	•	0	0	0	<i>.</i>		0		9	0	ø	¢																	
0,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	e	0		2	0	Ø	Ø																	
•	0	0	0	0	•	0	0	0	0	0	•	0	0	ő	0	0		¢	0	0	0																	
0	0	•	0	0	•	0	0	0	0	0	0	0	ð	0	0	0		0	0	Ø	0																	
0	•	•	•	0	0	0		0	0	0	0	0	0	0	0	ø		0	g	0	ø																	
				0	•	ė	0	0	0	0	0		0	0	0	¢		0	0	4	Ø																	
2	•	0	0	0	ø	ø	0	ø		Ø	ø	-	¢	0	ø	¢		0		¢	0																	

Conclusion

The specialized bonding method enables sealing of microfluidic channels in the presence of pre-immobilized oligonucleotides, thus offering other perspectives than plastics. This work pushes further wafer-scale glass bonding and opens the way to cost-effective precision glass consumables for life science applications, such as high throughput sequencing, but also in vitro diagnostics and cell handling.

> F +41 32 720 5700 CH-2002 Neuchâtel T +41 32 720 5111 Rue Jaquet-Droz 1